
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Wonhak Hong, Rajashekhar Modugu, Minsu Choi, "Efficient Online SelfChecking Modulo 2^n+1 Multiplier Design," IEEE Transactions on Computers, vol. 60, no. 9, pp. 13541365, September, 2011.  
BibTex  x  
@article{ 10.1109/TC.2010.49, author = {Wonhak Hong and Rajashekhar Modugu and Minsu Choi}, title = {Efficient Online SelfChecking Modulo 2^n+1 Multiplier Design}, journal ={IEEE Transactions on Computers}, volume = {60}, number = {9}, issn = {00189340}, year = {2011}, pages = {13541365}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2010.49}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Efficient Online SelfChecking Modulo 2^n+1 Multiplier Design IS  9 SN  00189340 SP1354 EP1365 EPD  13541365 A1  Wonhak Hong, A1  Rajashekhar Modugu, A1  Minsu Choi, PY  2011 KW  Modulo 2^n+1 multiplier KW  residue arithmetic KW  arithmetic circuit design KW  compressor KW  online selfchecking KW  international data encryption algorithm (IDEA). VL  60 JA  IEEE Transactions on Computers ER   
[1] Modern Applications of Residue Number System Arithmetic to Digital Signal Processing, M.A. Soderstrand, W.K. Jenkins, G.A. Jullien, and F.J. Taylor, eds. IEEE Press, 1986.
[2] P.E. Beckmann and B.R. Musicus, “Fast FaultTolerant Digital Convolution Using a Polynomial Residue Number System,” IEEE Trans. Signal Processing, vol. 41, no. 7, pp. 23002313, July 1993.
[3] R. Modugu, N. Park, and M. Choi, “A Fast LowPower Modulo $2^n+1$ Multiplier Design,” Proc. 2009 IEEE Int'l Instrumentation and Measurement Technology Conf., pp. 951956, May 2009.
[4] R. Modugu and M. Choi, “Efficient High Speed and LowPower Modulo $2^n+1$ Multiplier,” internal technical report, Missouri Univ. of Science and Tech nology.
[5] R. Modugu, N. Park, Y.B. Kim, and M. Choi, “Efficient OnLine SelfChecking Modulo $2^n+1$ Multiplier Design,” Proc. 24th IEEE Int'l Symp. Defect and Fault Tolerance in VLSI Systems, Oct. 2009.
[6] R. Zimmermann and W. Fichtner, “LowPower Logic Styles: CMOS versus PassTransistor Logic,” IEEE J. SolidState Circuits, vol. 32, no. 7, pp. 10791090, July 1997.
[7] S. Veeramachaneni, L. Avinash, R.M. Rajashekhar, and M.B. Srinivas, “Efficient Modulo $(2^k\pm 1)$ Binary to Residue Converters,” Proc. Sixth Int'l Workshop SystemonChip for RealTime Applications, pp. 195200, Dec. 2006.
[8] CH. Chang, J. Gu, and M. Zhang, “Ultra LowVoltage Lowpower CMOS 42 and 52 Compressors for Fast Arithmetic Circuits,” IEEE J. Circuits and Systems I, vol. 51, no. 10, pp. 19851997, Oct. 2004.
[9] M. Rouholamini, O. Kavehie, A.P. Mirbaha, S.J. Jasbi, and K. Navi, “A New Design for 7:2 Compressors,” Proc. IEEE/ACS Int'l Conf. Computer Systems and Applications 2007 (AICCSA '07), pp. 474478, May 2007.
[10] A. Curiger et al., “VINCI: VLSI Implementation of the New SecretkeyBlock Cipher IDEA,” Proc. Custom Integrated Circuits Conf., May 1993.
[11] R. Zimmermann, A. Curiger, H. Bonnenberg, H. Kaeslin, N. Felber, and W. Fichtner, “A 177 Mb/s VLSI Implementation of the International Data Encryption Algorithm,” IEEE J. SolidState Circuits, vol. 29, no. 3, pp. 303307, Mar. 1994.
[12] L.M. Leibowitz, “A Simplified Binary Arithmetic for the Fermat Number Transform,” IEEE Trans. Acoustics Speech and Signal Processing, vol. ASSP24, no. 5, pp. 356359, Oct. 1976.
[13] D.P. Vasudevan and P.K. Lala, “A Technique for Modular Design of SelfChecking CarrySelect Adder,” Proc. 20th IEEE Int'l Symp. Defect and Fault Tolerance in VLSI Systems (DFT '05), pp. 325333, Oct. 2005.
[14] U. Sparmann and S.M. Reddy, “On the Effectiveness of Residue Code Checking for Parallel Two's Complement Multipliers,” Proc. 24th Int'l Symp. FaultTolerant Computing (FTCS24), pp. 219228, June 1994.
[15] D. Marienfeld, E.S. Sogomonyan, V. Ocheretnij, and M. Gossel, “New SelfChecking OutputDuplicated Booth Multiplier with High Fault Coverage for Soft Errors,” Proc. 14th Asian Test Symp. '05, pp. 7681, Dec. 2005.
[16] M. Hunger and D. Marienfeld, “New SelfChecking Booth Multipliers,” Int'l J. Applied Math. and Computer Science, vol. 18, no. 3, pp. 319328, 2008.
[17] M. Goessel and F. Graf, Error Detection Circuits. McGrawHill, 1993.
[18] I.A. Noufal and M. Nicolaidis, “A CAD Framework for Generating SelfChecking Multipliers Based on Residue Codes,” Proc. Design, Automation and Test in Europe Conf. and Exhibition '99, pp. 122129, 1999.
[19] O. Garcia and T. Rao, “On the Method of Checking Logical Operations,” Proc. Second Ann. Princeton Conf. Information Science System, pp. 8995, 1968.
[20] U. Sparmann, “On the Check Base Selection Problem for Fast Adders,” Proc. IEEE 11th Ann. VLSI Test Symp., pp. 6265, Apr. 1993.
[21] F.F. Sellers, M.Y. Hsiao, and L.W. Bearnson, Error Detecting Logic for Digital Computers. McGrawHill, 1968.
[22] W. Peterson, “On Checking an Adder,” IBM J. Research and Development, vol. 2, pp. 166168, Apr. 1958.
[23] E. Fujiwara and K. Haruta, “FaultTolerant Arithmetic Logic Unit Using Parity Based Codes,” Trans. ECE of Japan, vol. E64, pp. 653660, Oct. 1981.
[24] D. Marienfeld, E.S. Sogomonyan, V. Ocheretnij, and M. Gossel, “A New SelfChecking Multiplier by Use of a Code Disjoint SumBit Duplicated Adder,” Proc. Ninth IEEE European Test Symp. (ETS '04), pp. 3035, May 2004.
[25] W.H. Debany, A.R. Macera, D.E. Daskiewich, M.J. Gorniak, K.A. Kwiat, and H.B. Dussault, “Effective Concurrent Test for a ParallelInput Multiplier Using Modulo 3,” Proc. IEEE VLSI Test Symp. “10th Anniversary Design, Test and Application: ASICs and SystemsonaChip,” pp. 280285, Apr. 1992.
[26] T.J. Slegel and R.J. Veracca, “Design and Performance of the IBM Enterprise System/9000 Type 9121 Vector Facility,” IBM J. Research and Development, vol. 35, pp. 367381, May 1991.
[27] M. Nicolaidis, “Efficient Implementations of SelfChecking Adders and ALUs,” Proc. 23rd Int'l Symp. FaultTolerant Computing (FTCS23), pp. 586595, June 1993.
[28] S. Kundu and S.M. Reddy, “Embedded Totally SelfChecking Checkers: A Practical Design,” IEEE Design and Test of Computers, vol. 7, no. 4, pp. 512, Aug. 1990.
[29] B. Kiran Kumar and P.K. Lala, “OnLine Detection of Faults in CarrySelect Adders,” Proc. Int'l Test Conf. 2003 (ITC '03), 2003.
[30] D.P. Vasudevan, P.K. Lala, and J.P. Parkerson, “SelfChecking CarrySelect Adder Design Based on TwoRail Encoding,” IEEE Trans. Circuits and Systems I: Regular Papers, vol. 54, no. 12, pp. 26962705, Dec. 2007.
[31] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs. Oxford Univ. Press, 2000.
[32] S. Mathew, M. Anders, R.K. Krishnamurthy, and S. Borkar, “A 4GHz 130nm Address Generation Unit with 32Bit SparseTree Adder Core,” IEEE J. SolidState Circuits, vol. 38, no. 5, pp. 689695, May 2003.
[33] J. Grad and J.E. Stine, “A MultiMode LowEnergy Binary Adder,” Proc. 40th Asilomar Conf. Signals, Systems and Computers, pp. 20652068, Oct./Nov. 2006.
[34] A. Tyagi, “A ReducedArea Scheme for CarrySelect Adders,” IEEE Trans. Computers, vol. 42, no. 10, pp. 11631170, Oct. 1993.
[35] P. Shivakumar, S.W. Keckler, M. Kistler, D. Burger, and L. Alvisi, “Modeling the Effect of Technology Trends on the Soft Error Rate of Combinatorial Logic,” Proc. Int'l Conf. Dependable Systems and Networks, pp. 389398, 2002.
[36] P. Kogge and H.S. Stone, “A Parallel Algorithm for the Efficient Solution of a General Class of Recurrence Equations,” IEEE Trans. Computers, vol. 22, no. 8, pp. 786793, Aug. 1973.
[37] H.T. Vergos, C. Efstathiou, and D. Nikolos, “DiminishedOne Modulo 2n+1 Adder Design,” IEEE Trans. Computers, vol. 51, no. 12, pp. 13891399, Dec. 2002.
[38] H.T. Vergos and C. Efstathiou, “Design of Efficient Modulo $2^n+1$ Multipliers,” IET Computers and Digital Techniques, vol. 1, no. 1, pp. 4957, 2007.