
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Arash Hariri, Arash ReyhaniMasoleh, "Concurrent Error Detection in Montgomery Multiplication over Binary Extension Fields," IEEE Transactions on Computers, vol. 60, no. 9, pp. 13411353, September, 2011.  
BibTex  x  
@article{ 10.1109/TC.2010.258, author = {Arash Hariri and Arash ReyhaniMasoleh}, title = {Concurrent Error Detection in Montgomery Multiplication over Binary Extension Fields}, journal ={IEEE Transactions on Computers}, volume = {60}, number = {9}, issn = {00189340}, year = {2011}, pages = {13411353}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2010.258}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Concurrent Error Detection in Montgomery Multiplication over Binary Extension Fields IS  9 SN  00189340 SP1341 EP1353 EPD  13411353 A1  Arash Hariri, A1  Arash ReyhaniMasoleh, PY  2011 KW  Montgomery multiplication KW  concurrent error detection KW  finite fields KW  elliptic curve cryptography. VL  60 JA  IEEE Transactions on Computers ER   
[1] V.S. Miller, “Use of Elliptic Curves in Cryptography,” Proc. Advances in CryptologyCRYPTO 85, pp. 417426, 1986.
[2] N. Koblitz, “Elliptic Curve Cryptosystems,” Math. of Computation, vol. 48, no. 177, pp. 203209, 1987.
[3] E.D. Mastrovito, VLSI Architectures for Computation in Galois Fields, PhD thesis, Linkoping Univ., 1991.
[4] L. Song and K. Parhi, “LowEnergy DigitSerial/Parallel Finite Field Multipliers,” The J. VLSI Signal Processing, vol. 19, no. 2, pp. 149166, 1998.
[5] A. ReyhaniMasoleh and M. Hasan, “Low Complexity Bit Parallel Architectures for Polynomial Basis Multiplication over $GF (2^m)$ ,” IEEE Trans. Computers, vol. 53, no. 8, pp. 945959, Aug. 2004.
[6] F. RodriguezHenriguez and C. Koc, “Parallel Multipliers Based on Special Irreducible Pentanomials,” IEEE Trans. Computers, vol. 52, no. 12, pp. 15351542, Dec. 2003.
[7] C. Koc and T. Acar, “Montgomery Multiplication in $GF(2^k)$ ,” Designs, Codes and Cryptography, vol. 14, no. 1, pp. 5769, 1998.
[8] H. Fan and Y. Dai, “Fast BitParallel $GF(2^n)$ Multiplier for All Trinomials,” IEEE Trans. Computers, vol. 54, no. 4, pp. 485490, Apr. 2005.
[9] J. Massey and J. Omura, “Computational Method and Apparatus for Finite Field Arithmetic,” US Patent 4,587,627. 1986.
[10] H. Wu, M. Hasan, and I. Blake, “New LowComplexity BitParallel Finite Field Multipliers Using Weakly Dual Bases,” IEEE Trans. Computers, vol. 47, no. 11, pp. 12231234, Nov. 1998.
[11] T. Beth and D. Gollman, “Algorithm Engineering for Public Key Algorithms,” IEEE J. Selected Areas in Communications, vol. 7, no. 4, pp. 458466, May 1989.
[12] P. Montgomery, “Modular Multiplication without Trial Division,” Math. of Computation, vol. 44, no. 170, pp. 519521, 1985.
[13] H. Wu, “Montgomery Multiplier and Squarer for a Class of Finite Fields,” IEEE Trans. Computers, vol. 51, no. 5, pp. 521529, May 2002.
[14] L. Batina, N. Mentens, B. Preneel, and I. Verbauwhede, “Balanced Point Operations for SideChannel Protection of Elliptic Curve Cryptography,” IEEE Proc. Information Security, vol. 152, no. 1, pp. 5765, Oct. 2005.
[15] A. Hariri and A. ReyhaniMasoleh, “BitSerial and BitParallel Montgomery Multiplication and Squaring over $GF(2^m)$ ,” IEEE Trans. Computers, vol. 58, no. 10, pp. 13321345, Oct. 2009.
[16] K. Sakiyama, L. Batina, B. Preneel, and I. Verbauwhede, “HighPerformance PublicKey Cryptoprocessor for Wireless Mobile Applications,” Mobile Networks and Applications, vol. 12, no. 4, pp. 245258, 2007.
[17] S. Mitra and E. McCluskey, “Which Concurrent Error Detection Scheme to Choose?” Proc. Int'l Test Conf., pp. 985994, 2000.
[18] I. Koren and C.M. Krishna, FaultTolerant Systems. Morgan Kaufman, 2007.
[19] Residue Number System Arithmetic: Modern Applications in Digital Signal Processing, M. A. Soderstrand, W. K. Jenkins, G. A. Jullien, and F. J. Taylor, eds., IEEE Press, 1986.
[20] C. Giraud and H. Thiebeauld, “A Survey on Fault Attacks,” Proc. Smart Card Research and Advanced Applications VI, pp. 159176, 2004.
[21] H. BarEl, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan, “The Sorcerer's Apprentice Guide to Fault Attacks,” Proc. IEEE, vol. 94, no. 2, pp. 370382, Feb. 2006.
[22] S. Fenn, M. Gossel, M. Benaissa, and D. Taylor, “OnLine Error Detection for BitSerial Multipliers in $GF(2^m)$ ,” J. Electronic Testing: Theory and Applications, vol. 13, no. 1, pp. 2940, 1998.
[23] A. ReyhaniMasoleh and M. Hasan, “Fault Detection Architectures for Field Multiplication Using Polynomial Bases,” IEEE Trans. Computers, vol. 55, no. 9, pp. 10891103, Sept. 2006.
[24] S. BayatSarmadi and M. Hasan, “On Concurrent Detection of Errors in Polynomial Basis Multiplication,” IEEE Trans. Very Large Scale Integration Systems, vol. 15, no. 4, pp. 413426, Apr. 2007.
[25] W. Chelton and M. Benaissa, “Concurrent Error Detection in $GF(2^m)$ Multiplication and Its Application in Elliptic Curve Cryptography,” IET Circuits, Devices and Systems, vol. 2, no. 3, pp. 289297, 2008.
[26] S. BayatSarmadi and M. Hasan, “Concurrent Error Detection in Finite Field Arithmetic Operations Using Pipelined and Systolic Architectures,” IEEE Trans. Computers, vol. 58, no. 11, pp. 15531567, Nov. 2009.
[27] C.W. Chiou, C.C. Chang, C.Y. Lee, T.W. Hou, and J.M. Lin, “Concurrent Error Detection and Correction in Gaussian Normal Basis Multiplier Over $GF(2^m)$ ,” IEEE Trans. Computers, vol. 58, no. 6, pp. 851857, June 2009.
[28] C.Y. Lee, C.W. Chiou, and J.M. Lin, “Concurrent Error Detection in a BitParallel Systolic Multiplier for Dual Basis of $GF(2^m)$ ,” J. Electronic Testing: Theory and Applications, vol. 21, no. 5, pp. 539549, 2005.
[29] C.Y. Lee, C.W. Chiou, and J.M. Lin, “Concurrent Error Detection in a Polynomial Basis Multiplier over $GF(2^m)$ ,” J. Electronic Testing: Theory and Applications, vol. 22, no. 2, pp. 143150, 2006.
[30] C.W. Chiou, C.Y. Lee, A.W. Deng, and J.M. Lin, “Concurrent Error Detection in Montgomery Multiplication over $GF (2^m)$ ,” IEICE Trans. Fundamentals of Electronics, Communications and Computer Sciences, vol. E89A, no. 2, pp. 566574, 2006.
[31] A. Hariri and A. ReyhaniMasoleh, “Fault Detection Structures for the Montgomery Multiplication over Binary Extension Fields,” Proc. Workshop Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 3746, 2007.
[32] Recommended Elliptic Curves for Fed. Gov. Use http://csrc.nist.gov/groups/ST/toolkit/documents/ dssNISTReCur. pdf, 2009.
[33] A. Hariri and A. ReyhaniMasoleh, “DigitSerial Structures for the Shifted Polynomial Basis Multiplication over Binary Extension Fields,” Proc. Second Int'l Workshop Arithmetic of Finite Fields (WAIFI), pp. 103116, 2008.