
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Ashkan Hosseinzadeh Namin, Huapeng Wu, Majid Ahmadi, "A WordLevel Finite Field Multiplier Using Normal Basis," IEEE Transactions on Computers, vol. 60, no. 6, pp. 890895, June, 2011.  
BibTex  x  
@article{ 10.1109/TC.2010.235, author = {Ashkan Hosseinzadeh Namin and Huapeng Wu and Majid Ahmadi}, title = {A WordLevel Finite Field Multiplier Using Normal Basis}, journal ={IEEE Transactions on Computers}, volume = {60}, number = {6}, issn = {00189340}, year = {2011}, pages = {890895}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2010.235}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  A WordLevel Finite Field Multiplier Using Normal Basis IS  6 SN  00189340 SP890 EP895 EPD  890895 A1  Ashkan Hosseinzadeh Namin, A1  Huapeng Wu, A1  Majid Ahmadi, PY  2011 KW  Finite field multiplier KW  normal basis KW  optimal normal basis KW  elliptic curve cryptography. VL  60 JA  IEEE Transactions on Computers ER   
[1] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications, second ed., Cambridge Univ. Press, 1997.
[2] D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curve Cryptography. Springer, Dec. 2003.
[3] C.C. Wang, T.K. Truong, H.M. Shao, L.J. Deutsch, J.K. Omura, and I.S. Reed, "VLSI Architectures for Computing Multiplications and Inverses in GF $(2^m)$ ," IEEE Trans. Computers, vol. 34, no. 8, pp. 709717, Aug. 1985.
[4] G.B. Agnew, R.C. Mullin, I.M. Onyszchuck, and S.A Vanstone, "An Implementation for a Fast PublicKey Cryptosystem," J. Cryptology, vol. 3, pp. 6379, 1991.
[5] T. Beth and Gollman, "Algorithm Engineering for Public Key Algorithms," IEEE J. Selected Areas in Comm., vol. 7, no. 4, pp. 458465, May 1989.
[6] M. Feng, "A VLSI Architecture for Fast Inversion in $GF(2^m)$ ," IEEE Trans. Computers, vol. 38, no. 10, pp. 13831386, Oct. 1989.
[7] W. Geiselmann and D. Gollmann, "Symmetry and Duality in Normal Basis Multiplication," Proc. Applied Algebra, Algebraic Algorithms, and Error Correcting Codes Symp., pp. 230238, July 1998.
[8] L. Gao and G.E. Sobelman, "Improved VLSI Designs for Multiplication and Inversion in $GF(2^M)$ over Normal Bases," Proc. 13th Ann. IEEE Int'l ASIC/SOC Conf., pp. 97101, 2000.
[9] C.C. Wang, T.K. Truong, H.M. Shao, L.J. Deutsch, J.K. Omura, and I.S. Reed, "VLSI Architectures for Computing Multiplications and Inverses in $GF(2^m)$ ," IEEE Trans. Computers, vol. 34, no. 8, pp. 709716, Aug. 1985.
[10] A. ReyhaniMasoleh and M.A. Hasan, "A New Construction of MasseyOmura Parallel Multiplier over $GF(2^m)$ ," IEEE Trans. Computers, vol. 51, no. 5, pp. 511520, May 2002.
[11] M.A. Hasan, M.z. Wang, and V.K. Bhargava, "A Modified MasseyOmura Parallel Multiplier for a Class of Finite Fields," IEEE Trans. Computers, vol. 42, no. 10, pp. 12781280, Oct. 1993.
[12] H. Wu and M.A. Hasan, "Low Complexity BitParallel Multipliers for a Class of Finite Fields," IEEE Trans. Computers, vol. 47, no. 8, pp. 883887, Aug. 1998.
[13] H. Wu, M. Anwarl Hasan, I.F. Blake, S. Gao, "Finite Field Multiplier Using Redundant Representation," IEEE Trans. Computers, vol. 51, no. 11, pp. 13061316, Nov. 2002.
[14] M.A. Hasan and V.K. Bhargava, "Low Complexity Architecture for Exponentiation in GF $(2^m)$ ," IEEE Electronics Letters, vol. 28, no. 21, pp. 19841986, Oct. 1992.
[15] J.L. Massey and J.K. Omura, "Computational Method and Apparatus for Finite Field Arithmetic," US Patent Application, 1984.
[16] C.K. Koc and B. Sunar, "LowComplexity BitParallel Canonical and Normal Basis Multipliers for a Class of Finite Fields," IEEE Trans. Computers, vol. 47, no. 3, pp. 353356, Mar. 1998.
[17] A. ReyhaniMasoleh and M.A. Hasan, "Low Complexity WordLevel Sequential Normal Basis Multipliers," IEEE Trans. Computers, vol. 54, no. 2, pp. 98110, Feb. 2005.
[18] A. ReyhaniMasoleh and M.A. Hasan, "Efficient DigitSerial Normal Basis Multipliers over GF $(2^m)$ ," ACM Trans. Embedded Computing Systems, vol. 3, no. 3, pp. 428439, Aug. 2004.
[19] R.C. Mullin and R.M. Wilson, "Optimal Normal Bases In GF($p^n$ )," Discrete Applied Math., vol. 22, pp. 149161, 1989.
[20] L. Gao and G.E. Sobelman, "Improved VLSI Design for Multiplication and Inversion in GF $(2^m)$ over Normal Basis," Proc. 13th Ann. IEEE ASIC/SOC Conf., pp. 97101, Sept. 2000.
[21] "Chapter 2, Stratix Architecture," Stratix Device Handbook. Altera Corporation, version 3.3, July 2005.