Subscribe

Issue No.04 - April (2011 vol.60)

pp: 602-607

M. Anwar Hasan , University of Waterloo, Canada

Christophe Negre , University of Perpignan, France

DOI Bookmark: http://doi.ieeecomputersociety.org/10.1109/TC.2010.132

ABSTRACT

We study Dickson bases for binary field representation. Such a representation seems interesting when no optimal normal basis exists for the field. We express the product of two field elements as Toeplitz or Hankel matrix-vector products. This provides a parallel multiplier which is subquadratic in space and logarithmic in time. Using the matrix-vector formulation of the field multiplication, we also present sequential multiplier structures with linear space complexity.

INDEX TERMS

Binary field, Dickson basis, Toeplitz matrix, multiplier, parallel, sequential.

CITATION

M. Anwar Hasan, Christophe Negre, "Low Space Complexity Multiplication over Binary Fields with Dickson Polynomial Representation",

*IEEE Transactions on Computers*, vol.60, no. 4, pp. 602-607, April 2011, doi:10.1109/TC.2010.132REFERENCES