This Article 
 Bibliographic References 
 Add to: 
3D Integration of CMOL Structures for FPGA Applications
April 2011 (vol. 60 no. 4)
pp. 463-471
Z. Abid, University at Albany, Albany
Ming Liu, Chinese Academy of Sciences, Beijing
Wei Wang, University at Albany, Albany
In this paper, a novel 3D CMOS nanohybrid technology, 3D CMOL, is introduced to establish FPGA chips. By combining two leading technologies, hybrid CMOS/nanoelectronic circuit (CMOL) and 3D integration, 3D CMOL can provide a feasible and more efficient fabrication/assembly process than the existing 2D CMOL. Furthermore, 3D CMOL FPGA implements circuits in three dimensions so that it can increase the density of the nanodevices and achieve higher performance compared to 2D CMOL and field programmable nanowire interconnect (FPNI). This paper presents the architecture optimization, 3D integration, defect tolerance, and performance evaluation of 3D CMOL FPGA. It is expected that this technology can lead to technology breakthroughs towards the development of the next FPGA generation.

[1] D.B. Strukov and K.K. Likharev, "CMOL FPGA: A Reconfigurable Architecture for Hybrid Digital Circuits with Two-Terminal Nanodevices," Nanotechnology, vol. 16, pp. 888-900, Apr. 2005.
[2] D.B. Strukov and K.K. Likharev, "A Reconfigurable Architecture for Hybrid CMOS/Nanodevice Circuits," Proc. 14th Int'l Symp. Field-Programmable Gate Arrays, pp. 131-140, Feb. 2006.
[3] D.B. Strukov, "Hybrid Semiconductor-Molecular Integrated Circuits for Digital Electronics: CMOL Approach," Nanoelectronics and Photonics, Springer, 2008.
[4] D. Tu, M. Liu, W. Wang, and S. Haruehanroengra, "3D CMOL: A 3D FPGA Using CMOS/Nanomaterial Hybrid Digital Circuits," IET (IEE) Micro and Nano Letters, vol. 2, no. 2, pp. 40-45, June 2007.
[5] G.S. Snider and R.S. Williams, "Nano/CMOS Architectures Using a Field-Programmable Nanowire Interconnect," Nanotechnology, vol. 18, pp. 035204-035214, Jan. 2007.
[6] A. DeHon, "Nanowire-Based Programmable Architectures," ACM J. Emerging Technologies in Computation Systems, vol. 1, pp. 109-162, 2005.
[7] A. DeHon, "Design of Programmable Interconnect for Sublithographic Programmable Logic Arrays," Proc. 13th Int'l Symp. Field-Programmable Gate Arrays, pp. 127-137, Feb. 2005.
[8] A. KleinOsowski, V.V. Pai, V. Rangarajan, P. Ranganath, K. KleinOsowski, M. Subramony, and D.J. Lilja, "Exploring Fine-Grained Fault Tolerance for Nanotechnology Devices with the Recursive Nanobox Processor Grid," IEEE Trans. Nanotechnology, vol. 5, no. 5, pp. 575-586, Sept. 2006.
[9] T. Wang, P. Narayanan, M. Leuchtenburg, and C.A. Moritz, "NASICs: A Nanoscale Fabric for Nanoscale Microprocessors," Proc. IEEE Int'l Nanoelectronics Conf., pp. 989-994, Mar. 2008.
[10] C.A. Moritz, T. Wang, P. Narayanan, M. Leuchtenburg, Y. Guo, C. Dezan, and M. Bennaser, "Fault-Tolerant Nanoscale Processors on Semiconductor Nanowire Grids," IEEE Trans. Circuits and Systems I, vol. 54, no. 11, pp. 2422-2437, Nov. 2007.
[11] S.C. Goldstein and M. Budiu., "NanoFabrics: Spatial Computing Using Molecular Electronics," Proc. 28th Int'l Symp. Computer Architecture, pp. 178-191, July 2001.
[12] Y. Chen, G.-Y. Jung, D.A. Ohlberg, X. Li, D.R. Stewart, J.O. Jeppesen, K.A. Nielsen, J.F. Stoddart, and R.S. Williams, "Nanoscale Molecular-Switch Crossbar Circuits," Nanotechnology, vol. 14, pp. 462-468, Mar. 2003.
[13] W. Wu, G.-Y. Jung, D.L. Olynick, J. Straznicky, Z. Li, X. Li, D.A.A. Ohlberg, Y. Chen, S.-Y. Wang, J.A. Liddle, W.M. Tong, and R.S. Williams, "One-Kilobit Cross-Bar Molecular Memory Circuits at 30-nm Half-Pitch Fabricated by Nanoimprint Lithography," Applied Physics. A, vol. 80, pp. 1173-1178, Mar. 2005.
[14] J.E. Green, J.W. Choi, A. Boukai, Y. Bunimovich, E. Johnston-Halperin, E. Delonno, Y. Luo, B.A. Sheriff, K. Xu, Y.S. Shin, H.-R. Tseng, J.F. Stoddart, and J.R. Heath, "A 160-Kilobit Molecular Electronic Memory Patterned at 1011 Bits per Square Centimetre," Nature, vol. 445, pp. 414-417, Jan. 2007.
[15] A. Chen, S. Haddad, Y.-C. Wu, T.-N. Fang, Z. Lan, S. Avanzino, S. Pangrle, M. Buynoski, M. Rathor, W. Cai, N. Tripsas, C. Bill, M. VanBuskirk, and M. Taguchi, "Non-Volatile Resistive Switching for Advanced Memory Applications," Proc. IEEE Electron Devices Meeting, pp. 746-749, Dec. 2005.
[16] Y.C. Chen, C.T. Rettner, S. Raoux, G.W. Burr, S.H. Chen, R.M. Shelby, M. Salinga, W.P. Risk, T.D. Happ, G.M. McClelland, M. Breitwisch, A. Schrott, J.B. Philipp, M.H. Lee, R. Cheek, T. Nirschl, M. Lamorey, C.F. Chen, E. Joseph, S. Zaidi, B. Yee, H.L. Lung, R. Bergmann, and C. Lam, "Ultra-Thin Phase-Change Bridge Memory Device Using GeSb," Proc. IEEE Electron Devices Meeting, pp. 1-4, Dec. 2006.
[17] The International Technology Roadmap for Semiconductor (ITRS): Process Integration, Devices, and Structures, http://www.itrs. netreports.html. 2008.
[18] W.R. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A.M. Sule, M. Steer, and P.D. Franzon, "Demystifying 3D ICs: The Pros and Cons of Going Vertical," IEEE Design and Test of Computers, vol. 22, no. 6, pp. 498-510, Nov. 2005.
[19] C. Ababei, P. Maidee, and K. Bazargan, "Exploring Potential Benefits of 3D FPGA Integration," Field Programmable Logic and Application, vol. 3203/2004, pp. 874-880, Springer, 2004.
[20] C. Dong, W. Wang, and S. Haruehanroengra, "Efficient Logic Architectures for CMOL Nanoelectronic Circuits," IET (IEE) Micro and Nano Letters, vol. 1, no. 2, pp. 74-78, July 2006.
[21] FPGA Place-and-Route Challenge, http://www.eecg.toronto. edu/~vaughn/challenge challenge.html, 2010.
[22] E.M. Sentovich, K.J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, P.R. Stephan, R.K. Brayton, and A.L. Sangiovanni-Vincentelli, "SIS: A System for Sequential Circuit Synthesis," Dept. of Electrical Eng. and Computer Science, Univ. of California, 1992.
[23] C. Dong, D. Liu, S. Haruehanroengra, and W. Wang, "3D nFPGA: A Reconfigurable Architecture for 3D CMOS/Nanomaterial Hybrid Digital Circuits," IEEE Trans. Circuits and Systems I, vol. 54, no. 11 pp. 2489-2501, Nov. 2007.
[24] W. Guan, M. Liu, S. Long, Q. Liu, and W. Wang, "On the Resistive Switching Mechanisms of Cu/ZrO2:Cu/Pt," Applied Physics Letters, vol. 93, p. 223506, Dec. 2008.
[25] W. Guan, S. Long, Q. Liu, M. Liu, and W. Wang, "Nonpolar Nonvolatile Resistive Switching in Cu Doped ZrO2," IEEE Electronic Device Letters, vol. 29, no. 5, pp. 434-438, Apr. 2008.

Index Terms:
CMOL, FPGA, 3D integration, defect tolerance, CAD.
Z. Abid, Ming Liu, Wei Wang, "3D Integration of CMOL Structures for FPGA Applications," IEEE Transactions on Computers, vol. 60, no. 4, pp. 463-471, April 2011, doi:10.1109/TC.2010.184
Usage of this product signifies your acceptance of the Terms of Use.