
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
JeanLuc Beuchat, Jérémie Detrey, Nicolas Estibals, Eiji Okamoto, Francisco RodríguezHenríquez, "Fast Architectures for the \eta_T Pairing over SmallCharacteristic Supersingular Elliptic Curves," IEEE Transactions on Computers, vol. 60, no. 2, pp. 266281, February, 2011.  
BibTex  x  
@article{ 10.1109/TC.2010.163, author = {JeanLuc Beuchat and Jérémie Detrey and Nicolas Estibals and Eiji Okamoto and Francisco RodríguezHenríquez}, title = {Fast Architectures for the \eta_T Pairing over SmallCharacteristic Supersingular Elliptic Curves}, journal ={IEEE Transactions on Computers}, volume = {60}, number = {2}, issn = {00189340}, year = {2011}, pages = {266281}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2010.163}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Fast Architectures for the \eta_T Pairing over SmallCharacteristic Supersingular Elliptic Curves IS  2 SN  00189340 SP266 EP281 EPD  266281 A1  JeanLuc Beuchat, A1  Jérémie Detrey, A1  Nicolas Estibals, A1  Eiji Okamoto, A1  Francisco RodríguezHenríquez, PY  2011 KW  Tate pairing KW  \eta_T pairing KW  elliptic curve KW  finite field arithmetic KW  Karatsuba multiplier KW  hardware accelerator KW  FPGA. VL  60 JA  IEEE Transactions on Computers ER   
[1] A. Barenghi, G. Bertoni, L. Breveglieri, and G. Pelosi, "A FPGA Coprocessor for the Cryptographic Tate Pairing Over ${\bf F}_p$ ," Proc. Fourth Int'l Conf. Information Technology: New Generations (ITNG '08), 2008.
[2] P.S.L.M. Barreto, "A Note on Efficient Computation of Cube Roots in Characteristic 3," Report 2004/305, Cryptology ePrint Archive, 2004.
[3] P.S.L.M. Barreto, S.D. Galbraith, C. ÓhÉigeartaigh, and M. Scott, "Efficient Pairing Computation on Supersingular Abelian Varieties," Designs, Codes and Cryptography, vol. 42, pp. 239271, 2007.
[4] P.S.L.M. Barreto, H.Y. Kim, B. Lynn, and M. Scott, "Efficient Algorithms for PairingBased Cryptosystems," Advances in Cryptology—CRYPTO '02, M. Yung, ed., pp. 354368, 2002.
[5] P.S.L.M. Barreto and M. Naehrig, "PairingFriendly Elliptic Curves of Prime Order," Proc. Int'l Workshop Selected Areas in Cryptography (SAC '05), B. Preneel and S. Tavares, eds., pp. 319331, 2006.
[6] G. Bertoni, L. Breveglieri, P. Fragneto, and G. Pelosi, "Parallel Hardware Architectures for the Cryptographic Tate Pairing," Proc. Third Int'l Conf. Information Technology: New Generations (ITNG '06), 2006.
[7] J.L. Beuchat, N. Brisebarre, J. Detrey, E. Okamoto, and F. RodríguezHenríquez, "A Comparison between Hardware Accelerators for the Modified Tate Pairing over ${\bf F}_{2^m}$ and ${\bf F}_{3^m}$ ," Proc. Int'l Conf. PairingBased Cryptography—Pairing '08, S.D. Galbraith and K.G. Paterson, eds., pp. 297315, 2008.
[8] J.L. Beuchat, N. Brisebarre, J. Detrey, E. Okamoto, M. Shirase, and T. Takagi, "Algorithms and Arithmetic Operators for Computing the $\eta_{T}$ Pairing in Characteristic Three," IEEE Trans. Computers, vol. 57, no. 11, pp. 14541468, Nov. 2008.
[9] J.L. Beuchat, N. Brisebarre, M. Shirase, T. Takagi, and E. Okamoto, "A Coprocessor for the Final Exponentiation of the $\eta_{T}$ Pairing in Characteristic Three," Proc. Int'l Workshop Arithmetic of Finite Fields (Waifi '07), C. Carlet and B. Sunar, eds., pp. 2539, 2007.
[10] J.L. Beuchat, J. Detrey, N. Estibals, E. Okamoto, and F. RodríguezHenríquez, "Hardware Accelerator for the Tate Pairing in Characteristic Three Based on KaratsubaOfman Multipliers," Proc. Workshop Cryptographic Hardware and Embedded Systems (CHES '09), C. Clavier and K. Gaj, eds., pp. 225239, 2009.
[11] J.L. Beuchat, H. Doi, K. Fujita, A. Inomata, P. Ith, A. Kanaoka, M. Katouno, M. Mambo, E. Okamoto, T. Okamoto, T. Shiga, M. Shirase, R. Soga, T. Takagi, A. Vithanage, and H. Yamamoto, "FPGA and ASIC Implementations of the $\eta_{T}$ Pairing in Characteristic Three," Computers and Electrical Eng., vol. 36, no. 1, pp. 7387, Jan. 2010.
[12] J.L. Beuchat, E. LópezTrejo, L. MartínezRamos, S. Mitsunari, and F. RodríguezHenríquez, "MultiCore Implementation of the Tate Pairing over Supersingular Elliptic Curves," Proc. Int'l Conf. Cryptology and Network Security (CANS '09), J.A. Garay, A. Miyaji, and A. Otsuka, eds., pp. 413432, 2009.
[13] R. Dutta, R. Barua, and P. Sarkar, "PairingBased Cryptographic Protocols: A Survey," Report 2004/64, Cryptology ePrint Archive, 2004.
[14] I. Duursma and H.S. Lee, "Tate Pairing Implementation for Hyperelliptic Curves $y^2=x^px+d$ ," Advances in Cryptology—ASIACRYPT '03, C.S. Laih, ed., pp. 111123, 2003.
[15] H. Fan, J. Sun, M. Gu, and K.Y. Lam, "OverlapFree KaratsubaOfman Polynomial Multiplication Algorithm," Report 2007/393, Cryptology ePrint Archive, 2007.
[16] K. Fong, D. Hankerson, J. López, and A. Menezes, "Field Inversion and Point Halving Revisited," IEEE Trans. Computers, vol. 53, no. 8, pp. 10471059, Aug. 2004.
[17] S.D. Galbraith, K. Harrison, and D. Soldera, "Implementing the Tate Pairing," Proc. Int'l Symp. Algorithmic Number Theory—ANTS V, C. Fieker and D.R. Kohel, eds., pp. 324337, 2002.
[18] E. Gorla, C. Puttmann, and J. Shokrollahi, "Explicit Formulas for Efficient Multiplication in ${\bf F}_{3^{6m}}$ ," Proc. Int'l Workshop Selected Areas in Cryptography (SAC '07), C. Adams, A. Miri, and M. Wiener, eds., pp. 173183, 2007.
[19] P. Grabher and D. Page, "Hardware Acceleration of the Tate Pairing in Characteristic Three," Proc. Workshop Cryptographic Hardware and Embedded Systems (CHES '05), J.R. Rao and B. Sunar, eds., pp. 398411, 2005.
[20] D. Hankerson, A. Menezes, and M. Scott, Software Implementation of Pairings, chapter 12, pp. 188206. IOS Press, 2009.
[21] G. Hanrot and P. Zimmermann, "A Long Note on Mulders' Short Product," J. Symbolic Computation, vol. 37, no. 3, pp. 391401, 2004.
[22] F. Hess, "Pairing Lattices," Proc. Int'l Conf. PairingBased Cryptography—Pairing '08, S.D. Galbraith and K.G. Paterson, eds., pp. 1838, 2008.
[23] F. Hess, N. Smart, and F. Vercauteren, "The Eta Pairing Revisited," IEEE Trans. Information Theory, vol. 52, no. 10, pp. 45954602, Oct. 2006.
[24] J. Jiang, "Bilinear Pairing (Eta_T Pairing) IP Core," technical report, Dept. of Computer Science, City Univ. of Hong Kong, May 2007.
[25] A. Joux, "A One Round Protocol for Tripartite DiffieHellman," Proc. Int'l Symp. Algorithmic Number Theory—ANTS IV, W. Bosma, ed., pp. 385394, 2000.
[26] D. Kammler, D. Zhang, P. Schwabe, H. Scharwaechter, M. Langenberg, D. Auras, G. Ascheid, R. Leupers, R. Mathar, and H. Meyr, "Designing an ASIP for Cryptographic Pairings over BarretoNaehrig Curves," Report 2009/056, Cryptology ePrint Archive, 2009.
[27] A. Karatsuba and Y. Ofman, "Multiplication of Multidigit Numbers on Automata," Soviet Physics Doklady (English Translation), vol. 7, no. 7, pp. 595596, Jan. 1963.
[28] M. Keller, T. Kerins, F. Crowe, and W.P. Marnane, "FPGA Implementation of a GF $(2^m)$ Tate Pairing Architecture," Proc. Int'l Workshop Applied Reconfigurable Computing (ARC '06), K. Bertels, J.M.P. Cardoso, and S. Vassiliadis, eds., pp. 358369, 2006.
[29] M. Keller, R. Ronan, W.P. Marnane, and C. Murphy, "Hardware Architectures for the Tate Pairing over GF $(2^m)$ ," Computers and Electrical Eng., vol. 33, nos. 5/6, pp. 392406, 2007.
[30] T. Kerins, W.P. Marnane, E.M. Popovici, and P.S.L.M. Barreto, "Efficient Hardware for the Tate Pairing Calculation in Characteristic Three," Proc. Int'l Workshop Cryptographic Hardware and Embedded Systems (CHES '05), J.R. Rao and B. Sunar, eds., pp. 412426, 2005.
[31] G. Kömürcü and E. Savaş, "An Efficient Hardware Implementation of the Tate Pairing in Characteristic Three," Proc. Third Int'l Conf. Systems (ICONS '08), E. PrasolovaFørland and M. Popescu, eds., pp. 2328, 2008.
[32] H. Li, J. Huang, P. Sweany, and D. Huang, "FPGA Implementations of Elliptic Curve Cryptography and Tate Pairing over a Binary Field," J. Systems Architecture, vol. 54, pp. 10771088, 2008.
[33] V.S. Miller, "Short Programs for Functions on Curves," http://crypto.stanford.edumiller, 1986.
[34] V.S. Miller, "The Weil Pairing, and Its Efficient Calculation," J. Cryptology, vol. 17, no. 4, pp. 235261, 2004.
[35] S. Mitsunari, "A Fast implementation of $\eta_{T}$ Pairing in Characteristic Three on Intel Core 2 Duo Processor," Report 2009/032, Cryptology ePrint Archive, 2009.
[36] S. Mitsunari, R. Sakai, and M. Kasahara, "A New Traitor Tracing," IEICE Trans. Fundamentals, vol. 2, pp. 481484, Feb. 2002.
[37] F. RodríguezHenríquez, G. MoralesLuna, and J. López, "LowComplexity BitParallel Square Root Computation Over ${GF}(2^m)$ for All Trinomials," IEEE Trans. Computers, vol. 57, no. 4, pp. 472480, Apr. 2008.
[38] R. Ronan, C. Murphy, T. Kerins, C. Ó hÉigeartaigh, and P.S.L.M. Barreto, "A Flexible Processor for the Characteristic $3 \;\eta_{T}$ Pairing," Int'l J. High Performance Systems Architecture, vol. 1, no. 2, pp. 7988, 2007.
[39] R. Ronan, C. ÓhÉigeartaigh, C. Murphy, M. Scott, and T. Kerins, "FPGA Acceleration of the Tate Pairing in Characteristic 2," Proc. IEEE Int'l Conf. Field Programmable Technology (FPT '06), pp. 213220, 2006.
[40] R. Ronan, C. ÓhÉigeartaigh, C. Murphy, M. Scott, and T. Kerins, "Hardware Acceleration of the Tate Pairing on a Genus 2 Hyperelliptic Curve," J. Systems Architecture, vol. 53, pp. 8598, 2007.
[41] R. Sakai, K. Ohgishi, and M. Kasahara, "Cryptosystems Based on Pairing" Proc. 2000 Symp. Cryptography and Information Security (SCIS '00), pp. 2628, Jan. 2000.
[42] C. Shu, S. Kwon, and K. Gaj, "FPGA Accelerated Tate Pairing Based Cryptosystem over Binary Fields," Proc. IEEE Int'l Conf. Field Programmable Technology (FPT '06), pp. 173180, 2006.
[43] C. Shu, S. Kwon, and K. Gaj, "Reconfigurable Computing Approach for Tate Pairing Cryptosystems over Binary Fields," IEEE Trans. Computers, vol. 58, no. 9, pp. 12211237, Sept. 2009.
[44] J.H. Silverman, The Arithmetic of Elliptic Curves. SpringerVerlag, 1986.
[45] L. Song and K.K. Parhi, "Low Energy DigitSerial/Parallel Finite Field Multipliers," J. VLSI Signal Processing, vol. 19, no. 2, pp. 149166, July 1998.
[46] F. Vercauteren, "Optimal Pairings," Report 2008/096, Cryptology ePrint Archive, 2008.
[47] L.C. Washington, Elliptic Curves—Number Theory and Cryptography, second ed., CRC Press, 2008.