
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Mark G. Arnold, Sylvain Collange, "A Real/Complex Logarithmic Number System ALU," IEEE Transactions on Computers, vol. 60, no. 2, pp. 202213, February, 2011.  
BibTex  x  
@article{ 10.1109/TC.2010.154, author = {Mark G. Arnold and Sylvain Collange}, title = {A Real/Complex Logarithmic Number System ALU}, journal ={IEEE Transactions on Computers}, volume = {60}, number = {2}, issn = {00189340}, year = {2011}, pages = {202213}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2010.154}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  A Real/Complex Logarithmic Number System ALU IS  2 SN  00189340 SP202 EP213 EPD  202213 A1  Mark G. Arnold, A1  Sylvain Collange, PY  2011 KW  Complex arithmetic KW  logarithmic number system KW  hardware function evaluation KW  FPGA KW  fast Fourier transform KW  VHDL. VL  60 JA  IEEE Transactions on Computers ER   
[1] M.G. Arnold, "Approximating Trigonometric Functions with the Laws of Sines and Cosines Using the Logarithmic Number System," Proc. Eighth EuroMicro Conf. Digital System Design, pp. 4855, 2005.
[2] M.G. Arnold, T.A. Bailey, J.R. Cowles, and C. Walter, "Analysis of Complex LNS FFTs," Signal Processing Systems SIPS 2001: Design and Implementation, F. Catthoor and M. Moonen, eds., pp. 5869, IEEE Press, 2001.
[3] M.G. Arnold, T.A. Bailey, J.R. Cowles, and C. Walter, "Fast Fourier Transforms Using the Complex Logarithm Number System," J. VLSI Signal Processing, vol. 33, no. 3, pp. 325335, 2003.
[4] M.G. Arnold, T.A. Bailey, J.R. Cowles, and M.D. Winkel, "Arithmetic CoTransformations in the Real and Complex Logarithmic Number Systems," IEEE Trans. Computers, vol. 47, no. 7, pp. 777786, July 1998.
[5] M.G. Arnold and S. Collange, "A DualPurpose Real/Complex Logarithmic Number System ALU," Proc. 19th IEEE Symp. Computer Arithmetic, pp. 1524, June 2009.
[6] N. Brisebarre, F. de Dinechin, and J.M. Muller, "Integer and FloatingPoint Constant Multipliers for FPGAs," Proc. Int'l Conf. ApplicationSpecific Systems, Architectures and Processors, pp. 239244, 2008.
[7] N. Burgess, "Scaled and Unscaled Residue Number System to Binary Conversion Techniques Using the Residue Number System," Proc. 13th Symp. Computer Arithmetic (ARITH '97), pp. 250257, Aug. 1997.
[8] J. Detrey and F. de Dinechin, "A Tool for Unbiased Comparison between Logarithmic and FloatingPoint Arithmetic," J. VLSI Signal Processing, vol. 49, no. 1, pp. 161175, 2007.
[9] J. Detrey and F. de Dinechin, "TableBased Polynomials for Fast Hardware Function Evaluation," Proc. IEEE Int'l Conf. ApplicationSpecific Systems, Architecture and Processors, pp. 328333, July 2005.
[10] F. de Dinechin, C. Klein, and B. Pasca, "Generating HighPerformance Custom FloatingPoint Pipelines," Proc. Int'l Conf. FieldProgrammable Logic, Aug. 2009.
[11] F. de Dinechin, B. Pasca, O. Creţ, and R. Tudoran, "An FPGASpecific Approach to FloatingPoint Accumulation and SumofProducts," FieldProgrammable Technology, pp. 3340, IEEE Press, 2008.
[12] D.M. Lewis, "An Architecture for Addition and Subtraction of Long Word Length Numbers in the Logarithmic Number System," IEEE Trans. Computers, vol. 39, no. 11, pp. 13251336, Nov. 1990.
[13] D.M. Lewis, "Complex Logarithmic Number System Arithmetic Using High Radix Redundant CORDIC Algorithms," Proc. 14th IEEE Symp. Computer Arithmetic, pp. 194203, Apr. 1999.
[14] R. Mehmke, "Additionslogarithmen für Complexe Grössen," Zeitschrift für Math. Physik, vol. 40, pp. 1530, 1895.
[15] R. Muscedere, V.S. Dimitrov, G.A. Jullien, and W.C. Miller, "Efficient Conversion from Binary to MultiDigit Multidimensional Logarithmic Number Systems Using Arrays of Range Addressable LookUp Tables," Proc. 13th IEEE Int'l Conf. ApplicationSpecific Systems, Architectures and Processors (ASAP '02), pp. 130138, July 2002.
[16] E.E. Swartzlander and A.G. Alexopoulos, "The Sign/Logarithm Number System," IEEE Trans. Computers, vol. 24, no. 12, pp. 12381242, Dec. 1975.
[17] E.E. Swartzlander et al., "Sign/Logarithm Arithmetic for FFT Implementation," IEEE Trans. Computers, vol. 32, no. 6, pp. 526534, June 1983.
[18] P.R. Turner, "Complex SLI Arithmetic: Representation, Algorithms and Analysis," Proc. 11th IEEE Symp. Computer Arithmetic, pp. 1825, July 1993.
[19] P. Vouzis and M.G. Arnold, "A Parallel Search Algorithm for CLNS Addition Optimization," Proc. IEEE Int'l Symp. Circuits and Systems (ISCAS '06), pp. 2024, May 2006.
[20] P. Vouzis, M.G. Arnold, and V. Paliouras, "Using CLNS for FFTs in OFDM Demodulation of UWB Receivers," Proc. IEEE Int'l Symp. Circuits and Systems (ISCAS '05), pp. 39543957, May 2005.
[21] P. Vouzis, S. Collange, and M.G. Arnold, "Cotransformation Provides Area and Accuracy Improvement in an HDL Library for LNS Subtraction," Proc. 10th EuroMicro Conf. Digital System Design Architectures, Methods and Tools, pp. 8593, Aug. 2007.
[22] P. Vouzis, S. Collange, and M.G. Arnold, "LNS Subtraction Using Novel Cotransformation and/or Interpolation," Proc. 18th Int'l Conf. ApplicationSpecific Systems, Architectures and Processors, pp. 107114, July 2007.
[23] http://www.wikipedia.org/wikiarctangent, Oct. 2008.
[24] http:/www.xlnsresearch.com, 2010.