
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Tomáš Brabec, "Speculatively Redundant Continued Logarithm Representation," IEEE Transactions on Computers, vol. 59, no. 11, pp. 14411454, November, 2010.  
BibTex  x  
@article{ 10.1109/TC.2010.110, author = {Tomáš Brabec}, title = {Speculatively Redundant Continued Logarithm Representation}, journal ={IEEE Transactions on Computers}, volume = {59}, number = {11}, issn = {00189340}, year = {2010}, pages = {14411454}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2010.110}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Speculatively Redundant Continued Logarithm Representation IS  11 SN  00189340 SP1441 EP1454 EPD  14411454 A1  Tomáš Brabec, PY  2010 KW  Computer arithmetic KW  representation of numbers KW  continued fraction KW  redundancy KW  computable real numbers KW  exact arithmetic. VL  59 JA  IEEE Transactions on Computers ER   
[1] A. Khinchin, Continued Fractions, third ed. Univ. of Chicago Press, 1964, translated from Russian by P. Wynn, P. Noordhoff Ltd., 1963, and by H. Eagle, Univ. of Chicago Press, 1964.
[2] R.W. Gosper, "Continued Fraction Arithmetic," unpublished manuscript, http://www.tweedledum.com/rwgcfup.htm, 1978.
[3] P. Gowland and D. Lester, "A Survey of Exact Arithmetic Implementations," Proc. Computability and Complexity in Analysis (CCA '00), J. Blanck, V. Brattka, and P. Hertling, eds., pp. 3047, 2000.
[4] D.R. Lester, "Effective Continued Fractions," Proc. 15th IEEE Symp. Computer Arithmetic, pp. 163170, 2001.
[5] H.J. Boehm, R. Cartwright, M. Riggle, and M.J. O'Donnell, "Exact Real Arithmetic: A Case Study in Higher Order Programming," Proc. ACM Symp. LISP and Functional Programming, pp. 162173, 1986.
[6] O. Mencer, "Rational Arithmetic Units in Computer Systems," PhD thesis, EECS, Stanford Univ., http://www.doc.ic.ac.uk/~oskar/pubsthesis.pdf , 2000.
[7] T. Brabec, "Hardware Implementation of Continued Logarithm Arithmetic," Proc. 12th GAMM IMACS Int'l Symp. Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN '06) Conf. PostProc., 2006.
[8] P. Kornerup and D.W. Matula, "Finite Precision Lexicographic Continued Fraction Number Systems," Proc. Seventh IEEE Symp. Computer Arithmetic, pp. 207214, 1985.
[9] M. Niqui, "Exact Arithmetic on the SternBrocot Tree," Technical Report NIIIR0325, Nijmeegs Instituut voor Informatica en Informateikunde, 2003.
[10] C. Mazenc, "On the Redundancy of Real Number Representation Systems," Research Report RR9316, Laboratoire de l'Informatique du Parallélisme, ftp://ftp.enslyon.fr/pub/LIP/Rapports/RR/ RR93RR9316.ps.Z, 1993.
[11] P. Kornerup and D.W. Matula, "An Algorithm for Redundant Binary BitPipelined Rational Arithmetic," IEEE Trans. Computers, vol. 39, no. 8, pp. 11061115, Aug. 1990.
[12] T. Brabec, "Proof of Interior Containment," A Supplement to an Electronic Version of this Manuscript, http://doi. ieeecomputersociety.org/10.1109 TC.2010.110, 2009.
[13] T. Brabec, "On Progress of Investigations in Continued Logarithm Arithmetic," Proc. Počítačové architektury a diagnostika 2007, pp. 6166, http://service.felk.cvut.cz/anc/brabect1/ pubpad2007extended.pdf, 2007.
[14] G.N. Raney, "On Continued Fractions and Finite Automata," Mathematische Annalen, vol. 206, no. 4, pp. 265283, 1973.
[15] P.J. Potts, "Exact Real Arithmetic Using Möbius Transformations," PhD thesis, Imperial College, Univ. of London, http://www. doc.ic.ac.uk/~ae/paperspottsphd.pdf , July 1998.
[16] R. Heckmann, "Contractivity of Linear Fractional Transformations," Theoretical Computer Science, vol. 279, nos. 1/2, pp. 6582, 2002.
[17] R. Heckmann, "How Many Argument Digits are Needed to Produce n Result Digits?" Electronic Notes in Theoretical Computer Science, vol. 24, pp. 1333, 1999.
[18] K.I. Ko, "On the Continued Fraction Representation of Computable Real Numbers," Theoretical Computer Science, vol. 47, no. 3, pp. 299313, 1986.
[19] T. Brabec, "Redundant Cont. Log. Representation: Proof of Contractivity," unpublished paper, http://service.felk.cvut.cz/anc/brabect1/ pubclproof08.pdf, 2008.
[20] T. Brabec, "Continued Logarithms," manuscript in preparation, http://service.felk.cvut.cz/anc/brabect1/ pubclreport08.pdf, 2008.
[21] R.W. Gosper, "Item 101 in Hakmem," AIM239, MIT, pp. 3744, http://dspace.mit.edu/bitstream/1721.1/6086/ 2AIM239.pdf, Apr. 1972.
[22] T. Brabec, "Quantitative Results," A Supplement to an Electronic Version of this Manuscript, http://doi.ieeecomputersociety.org/10.1109 TC.2010.110, 2009.
[23] Y.K. Kwok and I. Ahmad, "Static Scheduling Algorithms for Allocating Directed Task Graphs to Multiprocessors," ACM Computing Surveys, vol. 31, no. 4, pp. 406471, 1999.