
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Omran Ahmadi, Francisco RodríguezHenríquez, "Low Complexity Cubing and Cube Root Computation over $\F_{3^m}$ in Polynomial Basis," IEEE Transactions on Computers, vol. 59, no. 10, pp. 12971308, October, 2010.  
BibTex  x  
@article{ 10.1109/TC.2009.183, author = {Omran Ahmadi and Francisco RodríguezHenríquez}, title = {Low Complexity Cubing and Cube Root Computation over $\F_{3^m}$ in Polynomial Basis}, journal ={IEEE Transactions on Computers}, volume = {59}, number = {10}, issn = {00189340}, year = {2010}, pages = {12971308}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2009.183}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Low Complexity Cubing and Cube Root Computation over $\F_{3^m}$ in Polynomial Basis IS  10 SN  00189340 SP1297 EP1308 EPD  12971308 A1  Omran Ahmadi, A1  Francisco RodríguezHenríquez, PY  2010 KW  Finite field arithmetic KW  cubing KW  cube root KW  characteristic three KW  cryptography. VL  59 JA  IEEE Transactions on Computers ER   
[1] O. Ahmadi, D. Hankerson, and A. Menezes, "Formulas for Cube Roots in ${\hbox{\rlap{I}\kern 2.0pt{\hbox{F}}}}_{3^{\rm m}}$ ," Discrete Applied Math., vol. 155, no. 3, pp. 260270, 2007.
[2] O. Ahmadi, D. Hankerson, and A. Menezes, "Software Implementation of Arithmetic in ${\hbox{\rlap{I}\kern 2.0pt{\hbox{F}}}}_{3^{\rm m}}$ ," Proc. Int'l Workshop Arithmetic of Finite Fields (WAIFI), C. Carlet and B. Sunar, eds., vol. 4547, pp. 85102, 2007.
[3] O. Ahmadi, D. Hankerson, and F. RodríguezHenríquez, "Parallel Formulations of Scalar Multiplication on Koblitz Curves," J. Universal Computer Science, special issue on cryptography in computer system security, vol. 14, pp. 481504, 2008.
[4] O. Ahmadi and A. Menezes, "Irreducible Polynomials of Maximum Weight," Utilitas Mathematica, vol. 72, pp. 111123, 2007.
[5] R. Avanzi, "Another Look at Square Roots (and Other Less Common Operations) in Fields of Even Characteristic," Proc. Selected Areas in Cryptography, C.M. Adams, A. Miri, and M.J. Wiener, eds., vol. 4876, pp. 138154, 2007.
[6] R. Avanzi, "Another Look at Square Roots and Traces (and Quadratic Equations) in Fields of Even Characteristic," Cryptology ePrint Archive, Report 2007/103, http:/eprint.iacr.org/, 2007.
[7] P.S.L.M. Barreto, "A Note on Efficient Computation of Cube Roots in Characteristic 3," Cryptology ePrint Archive, Report 2004/305, http:/eprint.iacr.org/, 2004.
[8] P.S.L.M. Barreto, H.Y. Kim, B. Lynn, and M. Scott, "Efficient Algorithms for PairingBased Cryptosystems," Proc. 22nd Ann. Int'l Cryptology Conf. Advances in Cryptology (CRYPTO '02), M. Yung, ed., pp. 354368, 2002.
[9] J.L. Beuchat, N. Brisebarre, J. Detrey, E. Okamoto, and F. RodríguezHenríquez, "A Comparison between Hardware Accelerators for the Modified Tate Pairing over ${\hbox{\rlap{I}\kern 2.0pt{\hbox{F}}}}_{2^m}$ and ${\hbox{\rlap{I}\kern 2.0pt{\hbox{F}}}}_{3^m}$ ," Pairing Based Cryptography—Pairing 2008, S.D. Galbraith and K.G. Paterson, eds., pp. 297315, Springer, 2008.
[10] J.L. Beuchat, N. Brisebarre, J. Detrey, E. Okamoto, M. Shirase, and T. Takagi, "Algorithms and Arithmetic Operators for Computing the $\eta_t$ Pairing in Characteristic Three," IEEE Trans. Computers, special section on specialpurpose hardware for cryptography and cryptanalysis, vol. 57, no. 11, pp. 14541468, Nov. 2008.
[11] J.L. Beuchat, J. Detrey, N. Estibals, E. Okamoto, and F. RodríguezHenríquez, "Fast Architectures for the $\eta_{T}$ Pairing over SmallCharacteristic Supersingular Elliptic Curves," Cryptology ePrint Archive, Report 2009/398, 2009.
[12] J.L. Beuchat, E. LópezTrejo, L. MartínezRamos, S. Mitsunari, and F. RodríguezHenríquez, "MultiCore Implementation of the Tate Pairing over Supersingular Elliptic Curves," Proc. Cryptology and Network Security (CANS '09), J.A. Garay, A. Miyaji, and A. Otsuka, eds., pp. 413432, 2009.
[13] A.W. Bluher, "A SwanLike Theorem," Finite Fields and Their Applications, vol. 12, no. 1, pp. 128138, 2006.
[14] C. Doche, "Redundant Trinomials for Finite Fields of Characteristic 2," Proc. 10th Australasian Conf. Information Security and Privacy (ACISP '05), C. Boyd and J.M. González Nieto, eds., vol. 3574, pp. 122133, 2005.
[15] K. Fong, D. Hankerson, J. López, and A. Menezes, "Field Inversion and Point Halving Revisited," IEEE Trans. Computers, vol. 53, no. 8, pp. 10471059, Aug. 2004.
[16] D. Hankerson, A. Menezes, and M. Scott, Software Implementation of Pairings, chapter 12. IOS Press, to be published.
[17] D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Cryptography. SpringerVerlag, 2004.
[18] IEEE Standards Documents, IEEE P1363: Standard Specifications for Public Key Cryptography. Draft Version D18, IEEE, http://grouper. ieee.org/groups1363/, Nov. 2004.
[19] B. Ito and S. Tsujii, "Structure of a Parallel Multipliers for a Class of Fields ${\rm GF}(2^m)$ Using Normal Bases," Information and Computers, vol. 83, pp. 2140, 1989.
[20] A. Menezes, I. Blake, S. Gao, R. Mullin, S. Vanstone, and T. Yaghoobian, Applications of Finite Fields. Kluwer, 1993.
[21] D. Panairo and D. Thompson, "Efficient $p{\rm th}$ Root Computations in Finite Fields of Characteristic $p$ ," Designs, Codes and Cryptography, vol. 50, pp. 351358, 2009.
[22] F. RodríguezHenríquez, G. MoralesLuna, and J. López, "LowComplexity BitParallel Square Root Computation over GF($2^{m}$ ) for All Trinomials," IEEE Trans. Computers, vol. 57, no. 4, pp. 472480, Apr. 2008.
[23] M. Scott, "Optimal Irreducible Polynomials for GF($2^m$ ) Arithmetic," Cryptology ePrint Archive, Report 2007/192, http:/eprint.iacr.org/, 2007.
[24] J.H. Silverman, "Fast Multiplication in Finite Fields ${\rm GF}(2^{\rm n}$ )," Proc. Workshop Cryptographic Hardware and Embedded Systems (CHES), Ç.K. Koç and C. Paar, eds., vol. 1717, pp. 122134, 1999.
[25] J. von zur Gathen, "Irreducible Trinomials over Finite Fields," Math. of Computation, vol. 72, no. 243, pp. 14431452, 2003.
[26] L.C. Washington, Elliptic Curves—Number Theory and Cryptography, second ed. CRC Press, 2008.