
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Kris Gaj, Soonhak Kwon, Patrick Baier, Paul Kohlbrenner, Hoang Le, Mohammed Khaleeluddin, Ramakrishna Bachimanchi, Marcin Rogawski, "AreaTime Efficient Implementation of the Elliptic Curve Method of Factoring in Reconfigurable Hardware for Application in the Number Field Sieve," IEEE Transactions on Computers, vol. 59, no. 9, pp. 12641280, September, 2010.  
BibTex  x  
@article{ 10.1109/TC.2009.191, author = {Kris Gaj and Soonhak Kwon and Patrick Baier and Paul Kohlbrenner and Hoang Le and Mohammed Khaleeluddin and Ramakrishna Bachimanchi and Marcin Rogawski}, title = {AreaTime Efficient Implementation of the Elliptic Curve Method of Factoring in Reconfigurable Hardware for Application in the Number Field Sieve}, journal ={IEEE Transactions on Computers}, volume = {59}, number = {9}, issn = {00189340}, year = {2010}, pages = {12641280}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2009.191}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  AreaTime Efficient Implementation of the Elliptic Curve Method of Factoring in Reconfigurable Hardware for Application in the Number Field Sieve IS  9 SN  00189340 SP1264 EP1280 EPD  12641280 A1  Kris Gaj, A1  Soonhak Kwon, A1  Patrick Baier, A1  Paul Kohlbrenner, A1  Hoang Le, A1  Mohammed Khaleeluddin, A1  Ramakrishna Bachimanchi, A1  Marcin Rogawski, PY  2010 KW  Cipherbreaking KW  factoring KW  ECM KW  FPGA KW  NFS. VL  59 JA  IEEE Transactions on Computers ER   
[1] L. Batina and G. Muurling, "Montgomery in Practice: How to Do It More Efficiently in Hardware," Topics in Cryptology—CTRSA—The Cryptographers' Track at the RSA Conf., pp. 4052, 2002.
[2] D.J. Bernstein, "Circuits for Integer Factorization: A Proposal," http://cr.yp.topapers.html#nfscircuit, 2010.
[3] D.J. Bernstein, http://cr.yp.to/talks/2004.07.29slides.pdf , 2010.
[4] R.P. Brent, "Some Integer Factorization Algorithms Using Elliptic Curves," Australian Computer Science Comm., vol. 8, pp. 149163, 1986.
[5] H. Cohen, A Course in Computational Algebraic Number Theory, second ed. Springer Graduate Texts in Math., 1993.
[6] D. Coppersmith, "Modifications to the Number Field Sieve," J. Cryptology, vol. 6, pp. 169180, 1993.
[7] R. Crandall and C. Pomerance, Prime Numbers—A Computational Perspective, 2001.
[8] F. Bahr, M. Boehm, J. Franke, and T. Kleinjung, "Factorization of RSA200," http://cryptoworld.com/announcementsrsa200.txt , 2010.
[9] J. Fougeron, L. Fousse, A. Kruppa, D. Newman, and P. Zimmermann, "GMPECM," http://www.komite.net/laurent/soft/ecmecm6.0.1.html , 2005.
[10] J. Franke, T. Kleinjung, C. Paar, J. Pelzl, C. Priplata, and C. Stahlke, "SHARK—A Realizable Hardware Architecture for Factoring 1024Bit Composites with the GNFS," Cryptographic Hardware and Embedded Systems (CHES '05), SpringerVerlag, 2005.
[11] K. Gaj, S. Kwon, P. Baier, P. Kohlbrenner, H. Le, M. Khaleeluddin, and R. Bachimanchi, "Implementing the Elliptic Curve Method of Factoring in Reconfigurable Hardware," Proc. Special Purpose Hardware for Attacking Cryptographic Systems (SHARCS '06), Apr. 2006.
[12] T. Güneysu, C. Paar, G. Pfeiffer, and M. Schimmler, "Enhancing COPACOBANA for Advanced Applications in Cryptography and Cryptanalysis," Int'l Conf. Field Programmable Logic and Applications (FPL '08), pp. 675678, Sept. 2008.
[13] W. Geiselmann, F. Januszewski, H. Koepfer, J. Pelzl, and R. Steinwandt, "A Simpler Sieving Device: Combining ECM and TWIRL," Proc. Int'l Conf. Information Security and Cryptology (ICISC), 2006.
[14] R. Golliver, A.K. Lenstra, and K. McCurley, "Lattice Sieving and Trial Division," Proc. First Int'l Symp. Algorithmic Number Theory (ANTS I Conf.), pp. 1827, 1994.
[15] I. Kuon and J. Rose, "Measuring the Gap between FPGAs and ASICs," IEEE Trans. ComputerAided Design of Integrated Circuits and Systems, vol. 62, no. 2, pp. 203215, Feb. 2007.
[16] H.W. Lenstra, "Factoring Integers with Elliptic Curves," Ann. of Math., vol. 126, pp. 649673, 1987.
[17] A.K. Lenstra and H.W. Lenstra, The Development of the Number Field Sieve. Springer, 1993.
[18] A.K. Lenstra and H.W. LenstraJr., "Algorithms in Number Theory," Handbook of Theoretical Computer Science, Volume A, Algorithms and Complexity, J. van Leeuwen, ed., chapter 12, pp. 673715, Elsevier, 1990.
[19] C. McIvor, M. McLoone, J. McCanny, A. Daly, and W. Marnane, "Fast Montgomery Modular Multiplication and RSA Cryptographic Processor Architectures," Proc. 37th IEEE CS Asilomar Conf. Signals, Systems and Computers, pp. 379384, Nov. 2003.
[20] P.L. Montgomery, "Modular Multiplication without Trivial Division," Math. of Computation, vol. 44, pp. 519521, 1985.
[21] P.L. Montgomery, "Speeding the Pollard and Elliptic Curve Methods of Factorization," Math. of Computation, vol. 48, pp. 243264, 1987.
[22] P.L. Montgomery, "An FFT Extension of the Elliptic Curve Method of Factorization," PhD thesis, UCLA, 1992.
[23] G. de Meulenaer, F. Gosset, G.M. de Dormale, and J.J. Quisquater, "Integer Factorization Based on Elliptic Curve Method: Towards Better Exploitation of Reconfigurable Hardware," 15th Ann. IEEE Symp. FieldProgrammable Custom Computing Machines (FCCM '07), pp. 197206, Apr. 2007.
[24] J. Pelzl, J. Šimka, T. Kleinjung, J. Franke, C. Priplata, C. Stahlke, M. Drutarovsky, V. Fischer, and C. Paar, "AreaTime Efficient Hardware Architecture for Factoring Integers with the Elliptic Curve Method," IEE Proc. Information Security, vol . 152, no. 1, pp. 6778, 2005.
[25] J.M. Pollard, "Factoring with Cubic Integers," The Development of the Number Field Sieve, pp. 410, Springer, 1993.
[26] R.D. Silverman and S.S. Wagstaff, "A Practical Analysis of the Elliptic Curve Factoring Algorithm," Math. of Computation, vol. 61, no. 203, pp. 465462, 1993.
[27] M. Šimka, J. Pelzl, T. Kleinjung, J. Franke, C. Priplata, C. Stahlke, M. Drutarovsky, V. Fischer, and C. Paar, "Hardware Factorization Based Elliptic Curve Method," IEEE Symp. FieldProgrammable Custom Computing Machines (FCCM '05), 2005.
[28] SRC Computers, Inc., http:/www.srccomp.com, 2010.
[29] Synopsys 90 nm Generic Library for Teaching IC Design, http://www.synopsys.com/Community/UniversityProgram/ Pages Library.aspx, 2010.
[30] C.D. Walter, "Precise Bounds for Montgomery Modular Multiplication and Some Potentially Insecure RSA Moduli," Topics in Cryptology—CTRSA—The Cryptographers' Track at the RSA Conf., pp. 3039, 2002.
[31] P. Zimmermann and B. Dodson, "20 years of ECM," Proc. Seventh Algorithmic Number Theory Symp. (ANTS VII), pp. 525542, 2006.