
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Arash Hariri, Arash ReyhaniMasoleh, "BitSerial and BitParallel Montgomery Multiplication and Squaring over GF(2^m)," IEEE Transactions on Computers, vol. 58, no. 10, pp. 13321345, October, 2009.  
BibTex  x  
@article{ 10.1109/TC.2009.70, author = {Arash Hariri and Arash ReyhaniMasoleh}, title = {BitSerial and BitParallel Montgomery Multiplication and Squaring over GF(2^m)}, journal ={IEEE Transactions on Computers}, volume = {58}, number = {10}, issn = {00189340}, year = {2009}, pages = {13321345}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2009.70}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  BitSerial and BitParallel Montgomery Multiplication and Squaring over GF(2^m) IS  10 SN  00189340 SP1332 EP1345 EPD  13321345 A1  Arash Hariri, A1  Arash ReyhaniMasoleh, PY  2009 KW  Montgomery multiplication KW  squaring KW  finite (or Galois) fields KW  bitserial KW  bitparallel KW  trinomials KW  pentanomials. VL  58 JA  IEEE Transactions on Computers ER   
[1] E.D. Mastrovito , “VLSI Architectures for Computation in Galois Fields,” PhD dissertation, Linkoping Univ., 1991.
[2] L. Song and K. Parhi , “LowEnergy DigitSerial/Parallel Finite Field Multipliers,” J. Very Large Scale Integration (VLSI) Signal Processing, vol. 19, no. 2, pp. 149166, 1998.
[3] A. ReyhaniMasoleh and M. Hasan , “Low Complexity Bit Parallel Architectures for Polynomial Basis Multiplication over $GF (2^m)$ ,” IEEE Trans. Computers, vol. 53, no. 8, pp. 945959, Aug. 2004.
[4] F. RodriguezHenriguez and C. Koc , “Parallel Multipliers Based on Special Irreducible Pentanomials,” IEEE Trans. Computers, vol. 52, no. 12, pp. 15351542, Dec. 2003.
[5] C. Koc and T. Acar , “Montgomery Multiplication in $GF(2^k)$ ,” Designs, Codes and Cryptography, vol. 14, no. 1, pp. 5769, 1998.
[6] H. Fan and M. Hasan , “Fast Bit Parallel Shifted Polynomial Basis Multipliers in $GF (2^n)$ ,” IEEE Trans. Circuits and Systems I, Fundamental Theory and Applications, vol. 53, no. 12, pp. 26062615, Dec. 2006.
[7] P. Montgomery , “Modular Multiplication without Trial Division,” Math. Computation, vol. 44, no. 170, pp. 519521, 1985.
[8] K. Sakiyama , L. Batina , B. Preneel , and I. Verbauwhede , “HighPerformance PublicKey Cryptoprocessor for Wireless Mobile Applications,” Mobile Networks and Applications, vol. 12, no. 4, pp.245258, 2007.
[9] N. Mentens , S.B. Ors , B. Preneel , and J. Vandewalle , “An FPGA Implementation of a Montgomery Multiplier over $GF(2^m)$ ,” Proc. Seventh IEEE Workshop Design and Diagnostics of Electronic Circuits and Systems (DDECS), pp. 121128, 2004.
[10] C. Chiou , C. Lee , A. Deng , and J. Lin , “Concurrent Error Detection in Montgomery Multiplication over $GF (2^m)$ ,” IEICE Trans. Fundamentals of Electronics, Comm. and Computer Sciences, vol. 89, no. 2, pp. 566574, 2006.
[11] L. Batina , N. Mentens , B. Preneel , and I. Verbauwhede , “Balanced Point Operations for Side Channel Protection of Elliptic Curve Cryptography,” Proc. IEE: Information Security, vol. 152, no. 1, pp.5765, 2005.
[12] E. Savas , A. Tenca , M. Ciftcibasi , and Ç. Koc , “Novel Multiplier Architectures for $GF (p)$ and $GF (2^n)$ ,” Proc. IEE: Computers and Digital Techniques, vol. 151, no. 2, pp. 147160, 2004.
[13] D. Harris , R. Krishnamurthy , M. Anders , S. Mathew , and S. Hsu , “An Improved Unified Scalable Radix2 Montgomery Multiplier,” Proc. 17th IEEE Symp. Computer Arithmetic, pp. 172178, 2005.
[14] A. Fournaris and O. Koufopavlou , “Versatile Multiplier Architectures in $GF(2^k)$ Fields Using the Montgomery Multiplication Algorithm,” Integration, the Very Large Scale Integration (VLSI) J., vol. 41, no. 3, pp. 371384, 2008.
[15] J.S. Horng and E.H. Lu , “LowComplexity BitParallel Systolic Montgomery Multipliers for Special Classes of GF( $2^m$ ),” IEEE Trans. Computers, vol. 54, no. 9, pp. 10611070, Sept. 2005.
[16] H. Wu , “Montgomery Multiplier and Squarer for a Class of Finite Fields,” IEEE Trans. Computers, vol. 51, no. 5, pp. 521529, May 2002.
[17] B. Ansari and M. Hasan , “High Performance Architecture of Elliptic Curve Scalar Multiplication,” IEEE Trans. Computers, vol. 57, no. 11, pp. 14431453, Nov. 2008.
[18] Y. Lee , K. Sakiyama , L. Batina , and I. Verbauwhede , “EllipticCurveBased Security Processor for RFID,” IEEE Trans. Computers, vol. 57, no. 11, pp. 15141527, Nov. 2008.
[19] K. Sakiyama , L. Batina , B. Preneel , and I. Verbauwhede , “Multicore CurveBased Cryptoprocessor with Reconfigurable Modular Arithmetic Logic Units over $GF(2^n)$ ,” IEEE Trans. Computers, vol. 56, no. 9, pp. 12691282, Sept. 2007.
[20] Recommended Elliptic Curves for Federal Government Use, csrc. nist.gov/groups/ST/toolkit/documents/ dssNISTReCur.pdf, 2009.
[21] T. Beth and D. Gollman , “Algorithm Engineering for Public Key Algorithms,” IEEE J. Selected Areas in Comm., vol. 7, no. 4, pp. 458466, May 1989.
[22] S. Kumar , T. Wollinger , and C. Paar , “Optimum Digit Serial $GF(2^m$ ) Multipliers for CurveBased Cryptography,” IEEE Trans. Computers, vol. 55, no. 10, pp. 13061311, Oct. 2006.
[23] J. Imana and J. Sanchez , “BitParallel Finite Field Multipliers for Irreducible Trinomials,” IEEE Trans. Computers, vol. 55, no. 5, pp.520533, May 2006.
[24] R. Lidl and H. Niederreiter , Introduction to Finite Fields and Their Applications. Cambridge Univ. Press, 1986.
[25] S. Park , K. Chang , and D. Hong , “Efficient BitParallel Multiplier for Irreducible Pentanomials Using a Shifted Polynomial Basis,” IEEE Trans. Computers, vol. 55, no. 9, pp. 12111215, Sept. 2006.
[26] J. Imana , R. Hermida , and F. Tirado , “Low Complexity BitParallel Multipliers Based on a Class of Irreducible Pentanomials,” IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 14, no. 12, pp. 13881393, Dec. 2006.
[27] H. Wu , “Low Complexity BitParallel Finite Field Arithmetic Using Polynomial Basis,” Proc. First Int'l Workshop Cryptographic Hardware and Embedded Systems (CHES), pp. 280291, 1999.
[28] J. Guajardo , T. Güneysu , S. Kumar , C. Paar , and J. Pelzl , “Efficient Hardware Implementation of Finite Fields with Applications to Cryptography,” Acta Applicandae Math.: Int'l Survey J. Applying Math. and Math. Applications, vol. 93, no. 1, pp. 75118, 2006.