
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Chang Shu, Soonhak Kwon, Kris Gaj, "Reconfigurable Computing Approach for Tate Pairing Cryptosystems over Binary Fields," IEEE Transactions on Computers, vol. 58, no. 9, pp. 12211237, September, 2009.  
BibTex  x  
@article{ 10.1109/TC.2009.64, author = {Chang Shu and Soonhak Kwon and Kris Gaj}, title = {Reconfigurable Computing Approach for Tate Pairing Cryptosystems over Binary Fields}, journal ={IEEE Transactions on Computers}, volume = {58}, number = {9}, issn = {00189340}, year = {2009}, pages = {12211237}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2009.64}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Reconfigurable Computing Approach for Tate Pairing Cryptosystems over Binary Fields IS  9 SN  00189340 SP1221 EP1237 EPD  12211237 A1  Chang Shu, A1  Soonhak Kwon, A1  Kris Gaj, PY  2009 KW  Tate pairing KW  elliptic curve KW  reconfigurable computing KW  fieldprogrammable gate arrays (FPGAs) KW  finite field. VL  58 JA  IEEE Transactions on Computers ER   
[1] T. Kerins et al., “Efficient Hardware for the Tate Pairing Calculation in Characteristic Three,” Proc. Cryptographic Hardware and Embedded Systems (CHES '05), pp. 412426, 2005.
[2] T. Kerins , E.M. Popovici , and W.P. Marnane , “Algorithms and Architectures for Use in FPGA Implementations of Identity Based Encryption Schemes,” Proc. Field Programmable Logic and Applications (FPL '04), pp. 7483, 2004.
[3] P. Grabher and D. Page , “Hardware Acceleration of the Tate Pairing in Characteristic Three,” Proc. Cryptographic Hardware and Embedded Systems (CHES '05), pp. 398411, 2005.
[4] R. Ronan , C.O. Eigeartaigh , C. Murphy , M. Scott , T. Kerins , and W.P. Marnane , “A Dedicated Processor for the Eta pairing,” Cryptology ePrint Archive, http://eprint.iacr.org/2005330.pdf, 2009.
[5] G. Kömürcü and E. Savas , “An Efficient Hardware Implementation of the Tata Pairing in Characteristic Three,” Proc. Third Int'l Conf. Systems (ICONS '08), pp. 2328, 2008.
[6] J.L. Beuchat , N. Brisebarre , J. Detrey , E. Okamoto , M. Shirase , and T. Takagi , “Arithmetic Operators for PairingBased Cryptography,” Proc. Cryptographic Hardware and Embedded Systems (CHES '07), pp. 239255, 2007.
[7] J.L. Beuchat , N. Brisebarre , J. Detrey , E. Okamoto , M. Shirase , and T. Takagi , “Algorithms and Arithmetic Operators for Computing the $\eta_T$ Pairing in Characteristic Three,” IEEE Trans. Computers, vol. 57, no. 11, Nov. 2008.
[8] J.L. Beuchat , N. Brisebarre , J. Detrey , E. Okamoto , and F.R. Henríquez , “A Comparison Between Hardware Accelerators for the Modified Tate Pairing over ${\hbox{\rlap{I}\kern 2.0pt{\hbox{F}}}}_{2^m}$ and ${\hbox{\rlap{I}\kern 2.0pt{\hbox{F}}}}_{3^m}$ ,” Proc. Int'l Conf. PairingBased Cryptography (Pairing '08), pp. 297315, 2008.
[9] R. Granger , D. Page , and M. Stam , “Hardware and Software Normal Basis Arithmetic for Pairing Based Cryptography in Characteristic Three,” IEEE Trans. Computers, vol. 54, no. 7, Jul. 2005.
[10] R. Granger , D. Page , and M. Stam , “On Small Characteristic Algebraic Tori in Pairing Based Cryptography,” preprint, http://eprint.iacr.org/2004132.pdf, 2004.
[11] I. Duursma and H. Lee , “Tate Pairing Implementation for Hyperelliptic Curves $y^2=x^px+d$ ,” Proc. Int'l Conf. Theory and Application of Cryptology and Information Security (Asiacrypt '03), pp.111123, 2003.
[12] P. Barreto , H. Kim , B. Lynn , and M. Scott , “Efficient Algorithms for Pairing Based Cryptosystems,” Proc. Int'l Cryptology Conf. (Crypto '02), pp. 354368, 2002.
[13] P. Barreto , S. Galbraith , C. OhEigeartaigh , and M. Scott , “Efficient Pairing Computation on Supersingular Abelian Varieties,” Design, Codes and Cryptography, vol. 42, no. 3, pp. 239271, 2007.
[14] S. Kwon , “Efficient Tate Pairing Computation for Supersingular Elliptic Curves Over Binary Fields,” Proc. Australasian Conf. Information Security and Privacy (ACISP '05), pp. 134145, 2005.
[15] S. Galbraith , K. Harrison , and D. Soldera , “Implementing the Tate Pairing,” Proc. Int'l Workshop ANT Algorithms (ANTS '02), pp.324337, 2002.
[16] V. Miller , “Short Programs for Functions on Curves,” unpublished manuscript, 1986.
[17] F. Hess , N. Smart , and F. Vercauteren , “The Eta Pairing Revisited,” IEEE Trans. Information Theory, vol. 52, no. 10, Oct. 2006.
[18] A.J. Menezes , Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publishers, 1993.
[19] L.C. Washington , Elliptic Curves: Number Theory and Cryptography. CRC Press, Apr. 2008.
[20] H. Cohen , G. Frey , R. Avanzi , C. Doche , T. Lange , K. Nguyen , and F. Vercauteren , Handbook of Elliptic and Hyperelliptic Curve Cryptography. CRC Press, July 2005.
[21] I.F. Blake , G. Seroussi , and N.P. Smart , Advances in Elliptic Curve Cryptography. Cambridge Univ. Press, 2005.
[22] A. Shamir , “IdentityBased Cryptosystems and Signature Schemes,” Proc. Int'l Cryptology Conf. (Crypto '85), vol. 196, pp.4753, 1985.
[23] K. Fong , D. Hankerson , J. López , and A. Menezes , “Field Inversion and Point Halving Revisited,” Technical Report CORR 200318, Univ. of Waterloo, 2003.
[24] D. Boneh and M. Franklin , “Identity Based Encryption from the Weil Pairing,” Proc. Int'l Cryptology Conf. (Crypto '01), pp. 213229, 2001.
[25] R. Sakai , K. Ohgishi , and M. Kasahara , “Cryptosystems Based on Pairing,” Proc. Symp. Cryptography and Information Security (SICS '00), pp. 2628, 2000.
[26] A. Karatsuba and Y. Ofman , “Multiplication on ManyDigit Numbers by Automatic Computers,” Translation in PhysicsDoklady, vol. 7, pp. 595596, 1963.
[27] L. Song and K.K. Parhi , “Efficient Finite Field Serial/Parallel Multiplication,” Proc. Int'l Conf. Application Specific Systems, Architectures and Processors (ASAP '96), pp. 7282, 1996.
[28] LiDIA, A C++ Library for Computational Number Theory, http://www.informatik.tudarmstadt.de/TI LiDIA, 2009.
[29] T. Itoh and S. Tsujii , “A Fast Algorithm for Computing Multiplicative Inverses in $GF(2^m)$ Using Normal Bases,” Information and Computation, vol. 78, pp. 171177, 1988.
[30] Silicon Graphics, Inc., Reconfigurable ApplicationSpecific Computer User's Guide. 2008.
[31] Maplesoft, Inc., http:/www.maplesoft.com, 2009.
[32] A.J. Menezes , P.C. van Oorschot , and S.A. Vanstone , Handbook of Applied Cryptography. CRC Press, 1997.