
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Alessandro Cilardo, "Efficient BitParallel GF(2^m) Multiplier for a Large Class of Irreducible Pentanomials," IEEE Transactions on Computers, vol. 58, no. 7, pp. 10011008, July, 2009.  
BibTex  x  
@article{ 10.1109/TC.2009.16, author = {Alessandro Cilardo}, title = {Efficient BitParallel GF(2^m) Multiplier for a Large Class of Irreducible Pentanomials}, journal ={IEEE Transactions on Computers}, volume = {58}, number = {7}, issn = {00189340}, year = {2009}, pages = {10011008}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2009.16}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Efficient BitParallel GF(2^m) Multiplier for a Large Class of Irreducible Pentanomials IS  7 SN  00189340 SP1001 EP1008 EPD  10011008 A1  Alessandro Cilardo, PY  2009 KW  GF(2^m) bitparallel multiplication KW  shifted polynomial bases KW  irreducible pentanomials. VL  58 JA  IEEE Transactions on Computers ER   
[1] I.F. Blake, G. Seroussi, and N.P. Smart, Elliptic Curves in Cryptography. Cambridge Univ. Press, 1999.
[1] I.F. Blake, G. Seroussi, and N.P. Smart, Elliptic Curves in Cryptography. Cambridge Univ. Press, 1999.
[2] H. Fan and Y. Dai, “Fast Bit Parallel $GF(2^m)$ Multiplier for All Trinomials,” IEEE Trans. Computers, vol. 54, no. 4, pp.485490, Apr. 2005.
[2] H. Fan and Y. Dai, “Fast Bit Parallel $GF(2^m)$ Multiplier for All Trinomials,” IEEE Trans. Computers, vol. 54, no. 4, pp.485490, Apr. 2005.
[3] H. Fan and M.A. Hasan, “Fast Bit Parallel Shifted Polynomial Basis Multipliers in $GF(2^n)$ ,” IEEE Trans. Circuits and SystemsI, vol. 53, no. 12, pp.26062614, Dec. 2006.
[3] H. Fan and M.A. Hasan, “Fast Bit Parallel Shifted Polynomial Basis Multipliers in $GF(2^n)$ ,” IEEE Trans. Circuits and SystemsI, vol. 53, no. 12, pp.26062614, Dec. 2006.
[4] K. Fong, D. Hankerson, J. López, and A. Menezes, “Field Inversion and Point Halving Revisited,” IEEE Trans. Computers, vol. 53, no. 8, pp.10471059, Aug.. 2004.
[4] K. Fong, D. Hankerson, J. López, and A. Menezes, “Field Inversion and Point Halving Revisited,” IEEE Trans. Computers, vol. 53, no. 8, pp.10471059, Aug.. 2004.
[5] J.L. Imaña, R. Hermida, and F. Tirado, “Low Complexity BitParallel Multipliers Based on a Class of Irreducible Pentanomials,” IEEE Trans. Very Large Scale Integration (VLSI) Sytems, vol. 14, no. 12, Dec. 2006.
[5] J.L. Imaña, R. Hermida, and F. Tirado, “Low Complexity BitParallel Multipliers Based on a Class of Irreducible Pentanomials,” IEEE Trans. Very Large Scale Integration (VLSI) Sytems, vol. 14, no. 12, Dec. 2006.
[6] R. Lidl and H. Niederreiter, Finite Fields (Encyclopedia of Math. and Its Applications), second ed. Cambridge Univ. Press, 1997.
[6] R. Lidl and H. Niederreiter, Finite Fields (Encyclopedia of Math. and Its Applications), second ed. Cambridge Univ. Press, 1997.
[7] Fed. Information Processing Standards Publication 1862, Digital Signature Standard (DSS), Nat'l Inst. of Standards and Technology (NIST), Feb. 2000.
[7] Fed. Information Processing Standards Publication 1862, Digital Signature Standard (DSS), Nat'l Inst. of Standards and Technology (NIST), Feb. 2000.
[8] NTL: A Library for Doing Number Theory, http://www.shoup. netntl, 2009.
[8] NTL: A Library for Doing Number Theory, http://www.shoup. netntl, 2009.
[9] S.M. Park, K.Y. Chang, and D. Hong, “Efficient BitParallel Multiplier for Irreducible Pentanomials Using a Shifted Polynomial Basis,” IEEE Trans. Computers, vol. 55, no. 9, pp.12111215, Sept. 2006.
[9] S.M. Park, K.Y. Chang, and D. Hong, “Efficient BitParallel Multiplier for Irreducible Pentanomials Using a Shifted Polynomial Basis,” IEEE Trans. Computers, vol. 55, no. 9, pp.12111215, Sept. 2006.
[10] A. ReyhaniMasoleh and M.A. Hasan, “Low Complexity Bit Parallel Architectures for Polynomial Basis Multiplication over $GF(2^m)$ ,” IEEE Trans. Computers, vol. 53, no. 8, pp.945959, Aug. 2004.
[10] A. ReyhaniMasoleh and M.A. Hasan, “Low Complexity Bit Parallel Architectures for Polynomial Basis Multiplication over $GF(2^m)$ ,” IEEE Trans. Computers, vol. 53, no. 8, pp.945959, Aug. 2004.
[11] F. RodriguezHenriquez and Ç.K. Koç, “Parallel Multipliers Based on Special Irreducible Pentanomials,” IEEE Trans. Computers, vol. 52, no. 12, pp.15351542, Dec. 2003.
[11] F. RodriguezHenriquez and Ç.K. Koç, “Parallel Multipliers Based on Special Irreducible Pentanomials,” IEEE Trans. Computers, vol. 52, no. 12, pp.15351542, Dec. 2003.
[12] E. Savaş, M. Naseer, A.A.A. Gutub, and Ç.K. Koç, “Efficient Unified Montgomery Inversion with Multibit Shifting,” IEE Proc. Computers and Digital Techniques, vol. 152, no. 4, pp.489498, July 2005.
[12] E. Savaş, M. Naseer, A.A.A. Gutub, and Ç.K. Koç, “Efficient Unified Montgomery Inversion with Multibit Shifting,” IEE Proc. Computers and Digital Techniques, vol. 152, no. 4, pp.489498, July 2005.
[13] G. Seroussi, “Table of LowWeight Binary Irreducible Polynomials,” Technical Report HPL98135, HewlettPackard Laboratories, Palo Alto, Calif., http://www.hpl.hp.comtechreports/, Aug. 1998.
[13] G. Seroussi, “Table of LowWeight Binary Irreducible Polynomials,” Technical Report HPL98135, HewlettPackard Laboratories, Palo Alto, Calif., http://www.hpl.hp.comtechreports/, Aug. 1998.
[14] T. Zhang and K.K. Parhi, “Systematic Design of Original and Modified Mastrovito Multipliers for General Irreducible Polynomials,” IEEE Trans. Computers, vol. 50, no. 7, pp.734749, July 2001.
[14] T. Zhang and K.K. Parhi, “Systematic Design of Original and Modified Mastrovito Multipliers for General Irreducible Polynomials,” IEEE Trans. Computers, vol. 50, no. 7, pp.734749, July 2001.