
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Stef Graillat, "Accurate FloatingPoint Product and Exponentiation," IEEE Transactions on Computers, vol. 58, no. 7, pp. 9941000, July, 2009.  
BibTex  x  
@article{ 10.1109/TC.2008.215, author = {Stef Graillat}, title = {Accurate FloatingPoint Product and Exponentiation}, journal ={IEEE Transactions on Computers}, volume = {58}, number = {7}, issn = {00189340}, year = {2009}, pages = {9941000}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2008.215}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Accurate FloatingPoint Product and Exponentiation IS  7 SN  00189340 SP994 EP1000 EPD  9941000 A1  Stef Graillat, PY  2009 KW  Accurate product KW  exponentiation KW  finite precision KW  floatingpoint arithmetic KW  faithful rounding KW  errorfree transformations. VL  58 JA  IEEE Transactions on Computers ER   
[1] T. Ogita, S.M. Rump, and S. Oishi, “Accurate Sum and Dot Product,” SIAM J. Scientific Computing, vol. 26, no. 6, pp. 19551988, 2005.
[2] S.M. Rump, T. Ogita, and S. Oishi, “Accurate FloatingPoint Summation. Part I: Faithful Rounding,” SIAM J. Scientific Computing, vol. 31, no. 1, Oct. 2008.
[3] Research Report 04, S. Graillat, N. Louvet, and P. Langlois, “Compensated Horner Scheme,” Équipe de recherche DALI, Laboratoire LP2A, Université de Perpignan Via Domitia, France, July 2005.
[4] P. Langlois and N. Louvet, “How to Ensure a Faithful Polynomial Evaluation with the Compensated Horner Algorithm,” Proc. 18th IEEE Symp. Computer Arithmetic (ARITH '07), pp. 141149, 2007.
[5] P. Kornerup, V. Lefevre, and J.M. Muller, Computing Integer Powers in FloatingPoint Arithmetic, arXiv:0705.4369v1 [cs.NA], 2007.
[6] P.H. Sterbenz, FloatingPoint Computation. PrenticeHall, 1974.
[7] IEEE Standard for Binary FloatingPoint Arithmetic, vol. 22, no. 2,ANSI/IEEE Standard 7541985, New York, IEEE, 1985, reprinted in SIGPLAN Notices, pp. 925, 1987.
[8] N.J. Higham, Accuracy and Stability of Numerical Algorithms, second ed. SIAM, 2002.
[9] T.J. Dekker, “A FloatingPoint Technique for Extending the Available Precision,” Numerical Math., vol. 18, pp. 224242, 1971.
[10] D.E. Knuth, The Art of Computer Programming, Volume 2, Seminumerical Algorithms, third ed. AddisonWesley, 1998.
[11] Y. Nievergelt, “Scalar Fused MultiplyAdd Instructions Produce FloatingPoint Matrix Arithmetic Provably Accurate to the Penultimate Digit,” ACM Trans. Math. Software, vol. 29, no. 1, pp. 2748, 2003.
[12] C. Jacobi, H.J. Oh, K.D. Tran, S.R. Cottier, B.W. Michael, H. Nishikawa, Y. Totsuka, T. Namatame, and N. Yano, “The Vector FloatingPoint Unit in a Synergistic Processor Element of a Cell Processor,” Proc. 17thIEEE Symp. Computer Arithmetic (ARITH '05) pp. 5967, 2005.
[13] T. Ogita, S.M. Rump, and S. Oishi, “Verified Solution of Linear Systems without Directed Rounding,” Technical Report 200504, Advanced Research Inst. of Science and Eng., Waseda Univ., 2005.
[14] D.H. Bailey, A Fortran90 DoubleDouble Library, http://crd.lbl.gov/dhbailey/mpdistindex.html , 2001.
[15] C.Q. Lauter, Basic Building Blocks for a TripleDouble Intermediate Format, Research Report RR5702, INRIA, Sept. 2005.
[16] P. Langlois and N. Louvet, More Instruction Level Parallelism Explains the Actual Efficiency of Compensated Algorithms, hal00165020, version 1, 2007.