Subscribe

Issue No.06 - June (2009 vol.58)

pp: 851-857

Chin-Cheng Chang , Feng Chia University, Taichung City

Chiou-Yng Lee , LungHwa University, Taoyuan County

Ting-Wei Hou , National Cheng Kung University, Tainan City

Jim-Min Lin , Feng Chia University, Taichung City

DOI Bookmark: http://doi.ieeecomputersociety.org/10.1109/TC.2008.226

ABSTRACT

Fault-based cryptanalysis has been developed to effectively break both private-key and public-key cryptosystems, making robust finite field multiplication a very important research topic in recent years. However, no robust normal basis multiplier has been proposed in the literature. Therefore, this investigation presents a semisystolic Gaussian normal basis multiplier. Based on the proposed Gaussian normal basis multiplier, both concurrent error detection and correction capabilities can be easily achieved using time redundancy technology with no hardware modification.

INDEX TERMS

Finite field multiplication, Gaussian normal basis, elliptic curve cryptosystem, fault-based cryptanalysis, concurrent error detection, concurrent error correction.

CITATION

Chin-Cheng Chang, Chiou-Yng Lee, Ting-Wei Hou, Jim-Min Lin, "Concurrent Error Detection and Correction in Gaussian Normal Basis Multiplier over GF(2^m)",

*IEEE Transactions on Computers*, vol.58, no. 6, pp. 851-857, June 2009, doi:10.1109/TC.2008.226REFERENCES

- [1] F.J. MacWilliams and N.J.A. Sloane,
The Theory of Error-Correcting Codes. North Holland, 1977.- [2] R. Lidl and H. Niederreiter,
Introduction to Finite Fields and Their Applications. Cambridge Univ. Press, 1994.- [3] R.E. Blahut,
Fast Algorithms for Digital Signal Processing. Addison-Wesley, 1985.- [5] E.D. Mastrovito, “VLSI Architectures for Multiplication over Finite Field ${\rm GF}(2^{\rm m})$ ,”
Proc. Sixth Int'l Conf. Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes. (AAECC-6), T. Mora, ed., pp.297-309, July 1988.- [6] Ç.K. Koç and B. Sunar, “Low-Complexity Bit-Parallel Canonical and Normal Basis Multipliers for a Class of Finite Fields,”
IEEE Trans. Computers, vol. 47, no. 3, pp.353-356, Mar. 1998.- [14] M. Wang and I.F. Blake, “Bit Serial Multiplication in Finite Fields,”
SIAM J. Discrete Math., vol. 3, no. 1, pp.140-148, Feb. 1990.- [17] J.L. Massey and J.K. Omura,
Computational Method and Apparatus for Finite Field Arithmetic, US patent 4,587,627, May 1986.- [18] C.C. Wang, T.K. Truong, H.M. Shao, L.J. Deutsch, J.K. Omura, and I.S. Reed, “VLSI Architectures for Computing Multiplications and Inverses in ${\rm GF}(2^{\rm m})$ ,”
IEEE Trans. Computers, vol. 34, no. 8, pp.709-717, Aug. 1985.- [21] G.B. Agnew, R.C. Mullin, I.M. Onyszchuk, and S.A. Vanstone, “An Implementation for a Fast Public-Key Cryptosystem,”
J. Cryptology, vol. 3, pp.63-79, 1991.- [24] H. Fan and M.A. Hasan, “Subquadratic Computational Complexity Schemes for Extended Binary Field Multiplication Using Optimal Normal Bases,”
IEEE Trans. Computers, vol. 56, no. 10, pp.1435-1437, Oct. 2007.- [26] ANSI X.962,
Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA), Am. Nat'l Standards Inst., 1999.- [27] FIPS 186-2,
Digital Signature Standard (DSS), Federal Information Processing Standards Publication 186-2, Nat'l Inst. of Standards and Tech nology, 2000.- [28] IEEE Standard 1363-2000,
IEEE Standard Specifications for Public-Key Cryptography, Jan. 2000.- [29] D. Boneh, R. DeMillo, and R. Lipton, “On the Importance of Checking Cryptographic Protocols for Faults,”
Proc. Ann. Int'l Conf. Eurocrypt, pp.37-51, 1997.- [30] E. Biham and A. Shamir, “Differential Fault Analysis of Secret Key Cryptosystems,”
Proc. Int'l Conf. Cryptology, pp.513-525, 1997.- [31] J. Kelsey, B. Schneier, D. Wagner, and C. Hall, “Side-Channel Cryptanalysis of Product Ciphers,”
Proc. European Symp. Research in Computer Security (ESORICS), pp.97-110, Sept. 1998.- [32] R.J. Anderson and M. Kuhn, “Low Cost Attack on Tamper Resistant Devices,”
Proc. Fifth Int'l Workshop Security Protocols, 1997.- [33] I. Biehl, B. Meyer, and V. Müller, “Differential Fault Attacks on Elliptic Curve Cryptosystems,”
Proc. Int'l Conf. Cryptology 2000, pp.131-146, 2000.- [34] M. Ciet and M. Joye, “Elliptic Curve Cryptosystems in the Presence of Permanent and Transient faults,” Cryptology ePrint Archive, 2003/028, http://eprint.iacr.org/2003028.pdf, 2003.
- [35] J. Blömer, M. Otto, and J.-P. Seifert, “Sign Change Fault Attacks on Elliptic Curve Cryptosystems,”
Proc. Int'l Workshop Fault Diagnosis and Tolerance in Cryptography (FDTC '06), pp.36-52, 2006.- [36] R. Karri, G. Kuznetsov, and M. Goessel, “Parity-Based Concurrent Error Detection of Substitution-Permutation Network Block Ciphers,”
Proc. Int'l Workshop Cryptographic Hardware and Embedded Systems (CHES '03), pp.113-124, 2003.- [40] S. Fenn, M. Gossel, M. Benaissa, and D. Taylor, “On-Line Error Detection for Bit-Serial Multipliers in ${\rm GF}(2^{\rm m})$ ,”
J. Electronic Testing: Theory and Applications, vol. 13, pp.29-40, 1998.- [41] A. Reyhani-Masoleh and M.A. Hasan, “Error Detection in Polynomial Basis Multipliers over Binary Extension Fields,”
Proc. Int'l Workshop Cryptographic Hardware and Embedded Systems (CHES '02), pp.515-528, 2003.- [43] C.-Y. Lee, C.W. Chiou, and J.-L. Lin, “Concurrent Error Detection in a Bit-Parallel Systolic Multiplier for Dual Basis of ${\rm GF}(2^{\rm m})$ ,”
J. Electronic Testing: Theory and Applications, vol. 21, no. 5, pp.539-549, 2005.- [44] C.W. Chiou, “Concurrent Error Detection in Array Multipliers for ${\rm GF}(2^{\rm m})$ Fields,”
IEE Electronics Letters, vol. 38, no. 14, pp.688-689, July 2002.- [45] C.W. Chiou, C.Y. Lee, and J.M. Lin, “Concurrent Error Detection in a Polynomial Basis Multiplier over ${\rm GF}(2^{\rm m})$ ,”
J. Electronic Testing: Theory and Applications, vol. 22, no. 2, pp.143-150, Apr. 2006.- [47] J.H. Patel and L.Y. Fung, “Concurrent Error Detection in ALU's by Recomputing with Shifted Operands,”
IEEE Trans. Computers, vol. 31, no. 7, pp.589-595, July 1982.- [49] A.J. Menezes,
Applications of Finite Fields. Kluwer Academic Publications, 1993.- [50] I.F. Blake, R.M. Roth, and G. Seroussi, “Efficient Arithmetic in ${\rm GF}(2^{\rm m})$ through Palindromic Representation,” Technical Report HPL-98-134, http://www.hpl.hp.com/techreports/98HPL-98-134.html , 1998.
- [51] H.Y. Kim, J.Y. Park, J.H. Cheon, J.H. Park, J.H. Kim, and S.G. Hahn, “Fast Elliptic Curve Point Counting Using Gaussian Normal Basis,”
Proc. Ann. Int'l Conf. EUROCRYPT 2002, pp.14-28, 2002.- [52] N. Weste and K. Eshraghian,
Principles of CMOS VLSI Design: A System Perspective. Addison-Wesley, 1985.- [53] M74HC86, Quad Exclusive OR Gate,
STMicroelectronics, http://www.st.com/stonline/books/pdf/docs 2006.pdf, 2001.- [54] M74HC08, Quad 2-Input AND Gate,
STMicroelectronics, http://www.st.com/stonline/books/pdf/docs 1885.pdf, 2001.- [55] M74HC279, Quad ${\rm\bar S}-{\rm\bar R}$ Latch,
STMicroelectronics, http://www.st.com/stonline/books/pdf/docs 1937.pdf, 2001.- [56] M74HC32: Quad 2-Input OR Gate,
STMicroelectronics, http://www.st.com/stonline/books/pdf/docs 1944.pdf, 2001. |