
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Che Wun Chiou, ChinCheng Chang, ChiouYng Lee, TingWei Hou, JimMin Lin, "Concurrent Error Detection and Correction in Gaussian Normal Basis Multiplier over GF(2^m)," IEEE Transactions on Computers, vol. 58, no. 6, pp. 851857, June, 2009.  
BibTex  x  
@article{ 10.1109/TC.2008.226, author = {Che Wun Chiou and ChinCheng Chang and ChiouYng Lee and TingWei Hou and JimMin Lin}, title = {Concurrent Error Detection and Correction in Gaussian Normal Basis Multiplier over GF(2^m)}, journal ={IEEE Transactions on Computers}, volume = {58}, number = {6}, issn = {00189340}, year = {2009}, pages = {851857}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2008.226}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Concurrent Error Detection and Correction in Gaussian Normal Basis Multiplier over GF(2^m) IS  6 SN  00189340 SP851 EP857 EPD  851857 A1  Che Wun Chiou, A1  ChinCheng Chang, A1  ChiouYng Lee, A1  TingWei Hou, A1  JimMin Lin, PY  2009 KW  Finite field multiplication KW  Gaussian normal basis KW  elliptic curve cryptosystem KW  faultbased cryptanalysis KW  concurrent error detection KW  concurrent error correction. VL  58 JA  IEEE Transactions on Computers ER   
[1] F.J. MacWilliams and N.J.A. Sloane, The Theory of ErrorCorrecting Codes. North Holland, 1977.
[2] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications. Cambridge Univ. Press, 1994.
[3] R.E. Blahut, Fast Algorithms for Digital Signal Processing. AddisonWesley, 1985.
[4] T.C. Bartee and D.J. Schneider, “Computation with Finite Fields,” Information and Computing, vol. 6, pp.7998, Mar. 1963.
[5] E.D. Mastrovito, “VLSI Architectures for Multiplication over Finite Field ${\rm GF}(2^{\rm m})$ ,” Proc. Sixth Int'l Conf. Applied Algebra, Algebraic Algorithms, and ErrorCorrecting Codes. (AAECC6), T. Mora, ed., pp.297309, July 1988.
[6] Ç.K. Koç and B. Sunar, “LowComplexity BitParallel Canonical and Normal Basis Multipliers for a Class of Finite Fields,” IEEE Trans. Computers, vol. 47, no. 3, pp.353356, Mar. 1998.
[7] T. Itoh and S. Tsujii, “Structure of Parallel Multipliers for a Class of Fields ${\rm GF}(2^{\rm m})$ ,” Information and Computation, vol. 83, pp.2140, 1989.
[8] C.Y. Lee, E.H. Lu, and J.Y. Lee, “BitParallel Systolic Multipliers for ${\rm GF}(2^{\rm m})$ Fields Defined by AllOne and EquallySpaced Polynomials,” IEEE Trans. Computers, vol. 50, no. 5, pp.385393, May 2001.
[9] C. Paar, “A New Architecture for a Parallel Finite Field Multiplier with Low Complexity Based on Composite Fields,” IEEE Trans. Computers, vol. 45, no. 7, pp.856861, July 1996.
[10] H. Wu, “BitParallel Finite Field Multiplier and Squarer Using Polynomial Basis,” IEEE Trans. Computers, vol. 51, no. 7, pp.750758, July 2002.
[11] H. Fan and M.A. Hasan, “A New Approach to Subquadratic Space Complexity Parallel Multipliers for Extended Binary Fields,” IEEE Trans. Computers, vol. 56, no. 2, pp.224233, Feb. 2007.
[12] H. Wu, M.A. Hasan, and I.F. Blake, “New LowComplexity BitParallel Finite Field Multipliers Using Weakly Dual Bases,” IEEE Trans. Computers, vol. 47, no. 11, pp.12231234, Nov. 1998.
[13] S.T.J. Fenn, M. Benaissa, and D. Taylor, “${\rm GF}(2^{\rm m})$ Multiplication and Division over the Dual Basis,” IEEE Trans. Computers, vol. 45, no. 3, pp.319327, Mar. 1996.
[14] M. Wang and I.F. Blake, “Bit Serial Multiplication in Finite Fields,” SIAM J. Discrete Math., vol. 3, no. 1, pp.140148, Feb. 1990.
[15] E.R. Berlekamp, “BitSerial ReedSolomon Encoder,” IEEE Trans. Information Theory, vol. 28, no. 6, pp.869874, Nov. 1982.
[16] C.Y. Lee and C.W. Chiou, “Efficient Design of LowComplexity BitParallel Systolic Hankel Multipliers to Implement Multiplication in Normal and Dual Bases of ${\rm GF}(2^{\rm m})$ ,” IEICE Trans. Fundamentals of Electronics, Comm. and Computer Science, vol. E88A, no. 11, pp.31693179, Nov. 2005.
[17] J.L. Massey and J.K. Omura, Computational Method and Apparatus for Finite Field Arithmetic, US patent 4,587,627, May 1986.
[18] C.C. Wang, T.K. Truong, H.M. Shao, L.J. Deutsch, J.K. Omura, and I.S. Reed, “VLSI Architectures for Computing Multiplications and Inverses in ${\rm GF}(2^{\rm m})$ ,” IEEE Trans. Computers, vol. 34, no. 8, pp.709717, Aug. 1985.
[19] A. ReyhaniMasoleh, “Efficient Algorithms and Architectures for Field Multiplication Using Gaussian Normal Bases,” IEEE Trans. Computers, vol. 55, no. 1, pp.3447,Jan. 2006.
[20] C.W. Chiou and C.Y. Lee, “MultiplexerBased DoubleExponentiation for Normal Basis of GF ($2^{\rm m}$ ),” Computers and Security, vol. 24, no. 1, pp.8386, 2005.
[21] G.B. Agnew, R.C. Mullin, I.M. Onyszchuk, and S.A. Vanstone, “An Implementation for a Fast PublicKey Cryptosystem,” J. Cryptology, vol. 3, pp.6379, 1991.
[22] M.A. Hasan, M.Z. Wang, and V.K. Bhargava, “A Modified MasseyOmura Parallel Multiplier for a Class of Finite Fields,” IEEE Trans. Computers, vol. 42, no. 10, pp.12781280, Oct. 1993.
[23] S. Kwon, “A Low Complexity and a Low Latency Bit Parallel Systolic Multiplier over ${\rm GF}(2^{\rm m})$ Using an Optimal Normal Basis of Type II,” Proc. 16th IEEE Symp. Computer Arithmetic, pp.196202, June 2003.
[24] H. Fan and M.A. Hasan, “Subquadratic Computational Complexity Schemes for Extended Binary Field Multiplication Using Optimal Normal Bases,” IEEE Trans. Computers, vol. 56, no. 10, pp.14351437, Oct. 2007.
[25] D.W. Ash, I.F. Blake, and S.A. Vanstone, “Low Complexity Normal Bases,” Discrete Applied Math., vol. 25, pp.191210, 1989.
[26] ANSI X.962, Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA), Am. Nat'l Standards Inst., 1999.
[27] FIPS 1862, Digital Signature Standard (DSS), Federal Information Processing Standards Publication 1862, Nat'l Inst. of Standards and Tech nology, 2000.
[28] IEEE Standard 13632000, IEEE Standard Specifications for PublicKey Cryptography, Jan. 2000.
[29] D. Boneh, R. DeMillo, and R. Lipton, “On the Importance of Checking Cryptographic Protocols for Faults,” Proc. Ann. Int'l Conf. Eurocrypt, pp.3751, 1997.
[30] E. Biham and A. Shamir, “Differential Fault Analysis of Secret Key Cryptosystems,” Proc. Int'l Conf. Cryptology, pp.513525, 1997.
[31] J. Kelsey, B. Schneier, D. Wagner, and C. Hall, “SideChannel Cryptanalysis of Product Ciphers,” Proc. European Symp. Research in Computer Security (ESORICS), pp.97110, Sept. 1998.
[32] R.J. Anderson and M. Kuhn, “Low Cost Attack on Tamper Resistant Devices,” Proc. Fifth Int'l Workshop Security Protocols, 1997.
[33] I. Biehl, B. Meyer, and V. Müller, “Differential Fault Attacks on Elliptic Curve Cryptosystems,” Proc. Int'l Conf. Cryptology 2000, pp.131146, 2000.
[34] M. Ciet and M. Joye, “Elliptic Curve Cryptosystems in the Presence of Permanent and Transient faults,” Cryptology ePrint Archive, 2003/028, http://eprint.iacr.org/2003028.pdf, 2003.
[35] J. Blömer, M. Otto, and J.P. Seifert, “Sign Change Fault Attacks on Elliptic Curve Cryptosystems,” Proc. Int'l Workshop Fault Diagnosis and Tolerance in Cryptography (FDTC '06), pp.3652, 2006.
[36] R. Karri, G. Kuznetsov, and M. Goessel, “ParityBased Concurrent Error Detection of SubstitutionPermutation Network Block Ciphers,” Proc. Int'l Workshop Cryptographic Hardware and Embedded Systems (CHES '03), pp.113124, 2003.
[37] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri, “Error Analysis and Detection Procedures for a Hardware Implementation of the Advanced Encryption Standard,” IEEE Trans. Computers, vol. 52, no. 4, pp.492505, Apr. 2003.
[38] M. Joye, A.K. Lenstra, and J.J. Quisquater, “Chinese Remaindering Based Cryptosystems in the Presence of Faults,” J. Cryptology, vol. 12, pp.241245, 1999.
[39] D. Boneh, R.A. DeMillo, and R.J. Lipton, “On the Importance of Eliminating Errors in Cryptographic Computations,” J. Cryptology, vol. 14, pp.101119, 2001.
[40] S. Fenn, M. Gossel, M. Benaissa, and D. Taylor, “OnLine Error Detection for BitSerial Multipliers in ${\rm GF}(2^{\rm m})$ ,” J. Electronic Testing: Theory and Applications, vol. 13, pp.2940, 1998.
[41] A. ReyhaniMasoleh and M.A. Hasan, “Error Detection in Polynomial Basis Multipliers over Binary Extension Fields,” Proc. Int'l Workshop Cryptographic Hardware and Embedded Systems (CHES '02), pp.515528, 2003.
[42] A. ReyhaniMasoleh and M.A. Hasan, “Fault Detection Architectures for Field Multiplication Using Polynomial Bases,” IEEE Trans. Computers, vol. 55, no. 9, pp.10891103, Sept. 2006.
[43] C.Y. Lee, C.W. Chiou, and J.L. Lin, “Concurrent Error Detection in a BitParallel Systolic Multiplier for Dual Basis of ${\rm GF}(2^{\rm m})$ ,” J. Electronic Testing: Theory and Applications, vol. 21, no. 5, pp.539549, 2005.
[44] C.W. Chiou, “Concurrent Error Detection in Array Multipliers for ${\rm GF}(2^{\rm m})$ Fields,” IEE Electronics Letters, vol. 38, no. 14, pp.688689, July 2002.
[45] C.W. Chiou, C.Y. Lee, and J.M. Lin, “Concurrent Error Detection in a Polynomial Basis Multiplier over ${\rm GF}(2^{\rm m})$ ,” J. Electronic Testing: Theory and Applications, vol. 22, no. 2, pp.143150, Apr. 2006.
[46] C.W. Chiou, C.Y. Lee, A.W. Deng, and J.M. Lin, “Concurrent Error Detection in Montgomery Multiplication over ${\rm GF}(2^{\rm m})$ ,” IEICE Trans. Fundamentals of Electronics, Comm., and Computer Science, vol. E89A, no. 2, pp.566574, Feb. 2006.
[47] J.H. Patel and L.Y. Fung, “Concurrent Error Detection in ALU's by Recomputing with Shifted Operands,” IEEE Trans. Computers, vol. 31, no. 7, pp.589595, July 1982.
[48] J.H. Patel and L.Y. Fung, “Concurrent Error Detection in Multiply and Divide Arrays,” IEEE Trans. Computers, vol. 32, no. 4, pp.417422, Apr. 1983.
[49] A.J. Menezes, Applications of Finite Fields. Kluwer Academic Publications, 1993.
[50] I.F. Blake, R.M. Roth, and G. Seroussi, “Efficient Arithmetic in ${\rm GF}(2^{\rm m})$ through Palindromic Representation,” Technical Report HPL98134, http://www.hpl.hp.com/techreports/98HPL98134.html , 1998.
[51] H.Y. Kim, J.Y. Park, J.H. Cheon, J.H. Park, J.H. Kim, and S.G. Hahn, “Fast Elliptic Curve Point Counting Using Gaussian Normal Basis,” Proc. Ann. Int'l Conf. EUROCRYPT 2002, pp.1428, 2002.
[52] N. Weste and K. Eshraghian, Principles of CMOS VLSI Design: A System Perspective. AddisonWesley, 1985.
[53] M74HC86, Quad Exclusive OR Gate, STMicroelectronics, http://www.st.com/stonline/books/pdf/docs 2006.pdf, 2001.
[54] M74HC08, Quad 2Input AND Gate, STMicroelectronics, http://www.st.com/stonline/books/pdf/docs 1885.pdf, 2001.
[55] M74HC279, Quad ${\rm\bar S}{\rm\bar R}$ Latch, STMicroelectronics, http://www.st.com/stonline/books/pdf/docs 1937.pdf, 2001.
[56] M74HC32: Quad 2Input OR Gate, STMicroelectronics, http://www.st.com/stonline/books/pdf/docs 1944.pdf, 2001.