
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Mingsheng Ying, Yuan Feng, "An Algebraic Language for Distributed Quantum Computing," IEEE Transactions on Computers, vol. 58, no. 6, pp. 728743, June, 2009.  
BibTex  x  
@article{ 10.1109/TC.2009.13, author = {Mingsheng Ying and Yuan Feng}, title = {An Algebraic Language for Distributed Quantum Computing}, journal ={IEEE Transactions on Computers}, volume = {58}, number = {6}, issn = {00189340}, year = {2009}, pages = {728743}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2009.13}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  An Algebraic Language for Distributed Quantum Computing IS  6 SN  00189340 SP728 EP743 EPD  728743 A1  Mingsheng Ying, A1  Yuan Feng, PY  2009 KW  Quantum computing KW  circuits KW  distributed systems. VL  58 JA  IEEE Transactions on Computers ER   
[1] C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. Wootters, “Teleporting an Unknown Quantum State via Classical and EPR Channels,” Physical Rev. Letters, vol. 70, pp.18951899, 1993.
[2] J.I. Cirac, A.K. Ekert, S.F. Huelga, and C. Macchiavello, “Distributed Quantum Computation over Noisy Channels,” Physical Rev. A, vol. 59, pp. 42494254, 1999.
[3] R. Cleve and H. Buhrman, “Substituting Quantum Entanglement for Communication,” Physical Rev. A, vol. 56, pp. 12011204, 1997.
[4] D. Collins, N. Linden, and S. Popescu, “Nonlocal Content of Quantum Operations,” Physical Rev. A, vol. 64, no. 3, p.032302, 2001.
[5] E. D'Hondt and P. Panangaden, “The Computational Power of the W and GHZ States,” Quantum Information and Computation, vol. 6, pp. 173183, 2006.
[6] R.Y. Duan, Y. Feng, and M.S. Ying, “Entanglement is Not Necessary for Perfect Discrimination between Unitary Operations,” Physical Rev. Letters, vol. 98, no. 10, p. 100503, 2007.
[7] J. Eisert, K. Jacobs, P. Papadopoulos, and M.B. Plenio, “Optimal Local Implementation of Nonlocal Quantum Gates,” Physical Rev. A, vol. 62, p. 052317, 2000.
[8] Y. Feng, R.Y. Duan, Z.F. Ji, and M.S. Ying, “Probabilistic Bisimulations for Quantum Processes,” Information and Computation, vol. 205, pp. 16081635, 2007.
[9] S.J. Gay and R. Nagarajan, “Communicating Quantum Processes,” Proc. 32nd ACM Symp. Principles of Programming Languages, ACM Press, 2005.
[10] S.J. Gay and R. Nagarajan, “Typechecking Communicating Quantum Processes,” Math. Structures in Computer Science, vol. 16, pp. 375406, 2006.
[11] D. Gottesman and I.L. Chuang, “Demonstrating the Viability of Universal Quantum Computation Using Teleportation and SingleQubit Operations,” Nature, vol. 402, pp. 390393, 1999.
[12] L.K. Grover, Quantum Telecomputation, arXiv:quantph/9704012, 1997.
[13] P. Jorrand and M. Lalire, “Toward a Quantum Process Algebra,” Proc. First ACM Conf. Computing Frontiers, ACM Press, 2005.
[14] P. Jorrand and M. Lalire, “From Quantum Physics to Programming Languages: A Process Algebraic Approach,” Unconventional Programming Paradigms, J.P. Banatre, P. Fradet, J.L. Giavitto, and O. Michel, eds., pp. 116, Springer, 2005.
[15] R. Jozsa and N. Linden, “On the Role of Entanglement in QuantumComputational SpeedUp,” Proc. Royal Soc. London, Series A—Math., Physical Eng. Sciences, vol. 459, pp. 20112032, 2003.
[16] M. Lalire, “Relations among Quantum Processes: Bisimilarity and Congruence,” Math. Structures in Computer Science, vol. 16, pp. 407428, 2006.
[17] M. Lalire and F. Jorrand, “A Process Algebraic Approach to Concurrent and Distributed Quantum Computation: Operational Semantics,” Proc. Second Int'l Workshop Quantum Programming Languages, P. Selinger, ed., TUCS General Publications 33, Turku Centre for Computer Science, 2004.
[18] N.A. Lynch, Distributed Algorithms. Morgan Kaufmann, 1996.
[19] A. Serafini, S. Mancinians, and S. Bose, “Distributed Quantum Computation via Optical Fibers,” Physical Rev. Letters, vol. 96, 2006.
[20] S. Tani, H. Kobayashi, and K. Matsumoto, Exact Quantum Algorithms for the Leader Election Problem, V. Diekert and B.Duran, eds., pp. 581592. SpringerVerlag, 2005.
[21] R. van Meter, W.J. Munro, K. Nemoto, and K.M. Itoh, “Arithmetic on a DistributedMemory Quantum Multicomputer,” ACM J. Emerging Technologies in Computing Systems, vol. 3, no. 17, pp. 123, 2008.
[22] R. van Meter, K. Nemoto, and W.J. Munro, “Communication Links for Distributed Quantum Computation,” IEEE Trans. Computers, vol. 56, no. 12, pp. 16431653, Dec. 2007.
[23] G.M. Wang and M.S. Ying, “Perfect ManytoOne Teleportation with Stabilizer States,” Physical Rev. A, vol. 77, p. 032324, 2008.
[24] G.M. Wang and M.S. Ying, “Deterministic Distributed Dense Coding with Stabilizer States,” Physical Rev. A, vol. 77, no. 3, p.032306, 2008.
[25] A. Yimsiriwattana and S.J. Lomonaco, Jr., “Generalized GHZ States and Distributed Quantum Computing,” Coding Theory andQuantum Computing, D. Evans, J.J. Holt, C. Jones, K.Klintworth, B. Parshall, O. Pfister, and H.N. Ward, eds., AMS Contemporary Mathematics 381, 2005.
[26] A. Yimsiriwattana and S.J. Lomonaco, Jr., “Distributed Quantum Computing: A Distributed Shor Algorithm,” Quantum Information and Computation II, E. Donkor, A.R. Pirich, and H.E. Brandt, eds., 2004.
[27] M.S. Ying, Y. Feng, R.Y. Duan, and Z.F. Ji, “An Algebra ofQuantum Processes,” ACM Trans. Computational Logic, to be published.