The Community for Technology Leaders
RSS Icon
Issue No.04 - April (2009 vol.58)
pp: 572-576
Murat Cenk , Çankaya University, Ankara
Ferruh Özbudak , Nanyang Technical University, Singapore
Let $n$ and $\ell$ be positive integers and $f(x)$ be an irreducible polynomial over $\F_2$ such that $\ell deg(f(x))<2n-1.$ We obtain an effective upper bound for the multiplication complexity of $n$-term polynomials modulo $f(x)^\ell.$ This upper bound allows a better selection of the moduli when Chinese Remainder Theorem is used for polynomial multiplication over $\F_2$. We give improved formulae to multiply polynomials of small degree over $\F_2$. In particular we improve the best known multiplication complexities over $\F_2$ in the literature in some cases.
Finite field polynomial multiplication, Chinese remainder theorem.
Murat Cenk, Ferruh Özbudak, "Improved Polynomial Multiplication Formulas over $IF₂$ Using Chinese Remainder Theorem", IEEE Transactions on Computers, vol.58, no. 4, pp. 572-576, April 2009, doi:10.1109/TC.2008.207
[1] H. Fan and M.A. Hasan, “Comments on “Five, Six, and Seven-Term Karatsuba-Like Formulae,” IEEE Trans. Computers, vol. 56, no. 5, pp.716-717, May 2007.
[2] A. Karatsuba and Y. Ofman, “Multiplication of Multidigit Numbers by Automata,” Soviet Physics—Doklady, vol. 7, pp. 595-596, 1963.
[3] P.L. Montgomery, “Five, Six, and Seven-Term Karatsuba-Like Formulae,” IEEE Trans. Computers, vol. 54, no. 3, pp. 362-369, Mar. 2005.
[4] B. Sunar, “A Generalized Method for Constructing Subquadratic Complexity $GF(2^{k})$ Multipliers,” IEEE Trans. Computers, vol. 53, no. 9, pp. 1097-1105, Sept. 2004.
[5] A. Weimerskirch and C. Paar, Generalizations of the Karatsuba Algorithm for Polynomial Multiplication,, 2008.
[6] S. Winograd, Arithmetic Complexity of Computations. SIAM, 1980.
34 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool