
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Edward P.F. Chan, Yaya Yang, "Shortest Path Tree Computation in Dynamic Graphs," IEEE Transactions on Computers, vol. 58, no. 4, pp. 541557, April, 2009.  
BibTex  x  
@article{ 10.1109/TC.2008.198, author = {Edward P.F. Chan and Yaya Yang}, title = {Shortest Path Tree Computation in Dynamic Graphs}, journal ={IEEE Transactions on Computers}, volume = {58}, number = {4}, issn = {00189340}, year = {2009}, pages = {541557}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2008.198}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Shortest Path Tree Computation in Dynamic Graphs IS  4 SN  00189340 SP541 EP557 EPD  541557 A1  Edward P.F. Chan, A1  Yaya Yang, PY  2009 KW  Dynamic shortest path KW  shortest path trees KW  dynamic graphs KW  dynamic algorithms KW  graph algorithms KW  routing protocol. VL  58 JA  IEEE Transactions on Computers ER   
[1] Tiger/Line Files. Bureau of Census, US Dept. of Commerce Economics and Statistics Administration, 1998.
[2] Java Universal Network/Graph Framework, June 2004.
[3] G. Ausiello, G.F. Italiano, A. MarchettiSpaccamela, and U. Nanni, “Incremental Algorithms for Minimal Length Paths,” J. Algorithms, vol. 12, no. 4, pp. 615638, 1991.
[4] S. Baswana, R. Hariharan, and S. Sen, “Improved Decremental Algorithms for Maintaining Transitive Closure and AllPairs Shortest Paths,” Proc. 34th Ann. ACM Symp. Theory of Computing (STOC '02), pp. 113127, 2002.
[5] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications. Elsevier NorthHolland, 1976.
[6] L.S. Buriol, M.G.C. Resende, and M. Thorup, “Speeding Up Dynamic Shortest Path Algorithms,” TR TD5RJ8B, AT&T Labs Research, Sept. 2003.
[7] C. Demetrescu, D. Frigioni, A. MarchettiSpaccamela, and U. Nanni, “Maintaining Shortest Paths in Digraphs with Arbitrary Arc Weights: An Experimental Study,” Proc. Fourth Int'l Workshop Algorithm Eng. (WAE '01), pp. 218229, 2001.
[8] E.W. Dijkstra, “A Note on Two Problems in Connection with Graphs,” Numerical Math., vol. 1, pp. 269271, 1959.
[9] J. Fakcharoemphol and S. Rao, “Planar Graphs, Negative Weight Edges, Shortest Paths, and Near Linear Time,” Proc. 42nd IEEE Ann. Symp. Foundations of Computer Science (FOCS'01), pp. 232241, 2001.
[10] D. Frigioni, M. Ioffreda, U. Nanni, and G. Pasquale, “Experimental Analysis of Dynamic Algorithms for the SingleSource ShortestPath Problem,” ACM J. Experimental Algorithms, vol. 3, p. 5, 1998.
[11] D. Frigioni, A. MarchettiSpaccamela, and U. Nanni, “Semidynamic Algorithms for Maintaining SingleSource Shortest Path Trees,” Algorithmica, vol. 22, no. 3, pp. 250274, Nov. 1998.
[12] D. Frigioni, A. MarchettiSpaccamela, and U. Nanni, “Fully Dynamic Algorithms for Maintaining Shortest Paths Trees,” J.Algorithms, vol. 34, no. 2, pp. 251281, 2000.
[13] V. King, “Fully Dynamic Algorithms for Maintaining AllPairs Shortest Paths and Transitive Closure in Digraphs,” Proc. 40th IEEE Symp. Foundations of Computer Science (FOCS '99), pp. 8191, 1999.
[14] P. Klein, S. Rao, M. Rauch, and S. Subramanian, “Faster ShortestPath Algorithms for Planar Graphs,” Proc. 26th Ann. ACM Symp. Theory of Computing (STOC '94), pp. 2737, 1994.
[15] P. Narváez, K. Siu, and H. Tzeng, “New Dynamic Algorithms for Shortest Path Tree Computation,” ACM Trans. Networking, vol. 8, no. 6, pp. 734746, 2000.
[16] P. Narváez, K. Siu, and H. Tzeng, “New Dynamic SPT Algorithm Based on a BallandString Model,” ACM Trans. Networking, vol. 9, no. 6, pp. 706718, 2001.
[17] S. Nguyen, S. Pallottino, and M.G. Scutellá, “A New Dual Algorithm for Shortest Path Reoptimization,” Transportation and Network Analysis: Current Trends, pp. 221235, Kluwer Academic Publishers, 2002.
[18] G. Ramalingam and T.W. Reps, “An Incremental Algorithm for a Generalization of the ShortestPath Problem,” J. Algorithms, vol. 21, no. 2, pp. 267305, 1996.
[19] G. Ramalingam and T.W. Reps, “On the Computational Complexity of Dynamic Graph Problems,” Theoretical Computer Science, vol. 158, nos. 12, pp. 233277, 1996.
[20] R.E. Tarjan, “Sensitivity Analysis of Minimum Spanning Trees and Shortest Path Trees,” Information Processing Letters, vol. 14, no. 1, pp. 3033, Mar. 1982.
[21] B. Xiao, Q. Zhuge, and E.H.M. Sha, “Efficient Algorithms for Dynamic Update of Shortest Path Tree in Networking,” J.Computers and Their Applications, vol. 11, no. 1, 2003.