
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
JungHeum Park, HeeChul Kim, HyeongSeok Lim, "ManytoMany Disjoint Path Covers in the Presence of Faulty Elements," IEEE Transactions on Computers, vol. 58, no. 4, pp. 528540, April, 2009.  
BibTex  x  
@article{ 10.1109/TC.2008.160, author = {JungHeum Park and HeeChul Kim and HyeongSeok Lim}, title = {ManytoMany Disjoint Path Covers in the Presence of Faulty Elements}, journal ={IEEE Transactions on Computers}, volume = {58}, number = {4}, issn = {00189340}, year = {2009}, pages = {528540}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2008.160}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  ManytoMany Disjoint Path Covers in the Presence of Faulty Elements IS  4 SN  00189340 SP528 EP540 EPD  528540 A1  JungHeum Park, A1  HeeChul Kim, A1  HyeongSeok Lim, PY  2009 KW  Fault tolerance KW  disjoint path covers KW  interconnection networks KW  restricted HLgraphs KW  recursive circulants KW  strong Hamiltonicity KW  fault Hamiltonicity. VL  58 JA  IEEE Transactions on Computers ER   
[1] D.K. Biss, “Hamiltonian Decomposition of Recursive Circulant Graphs,” Discrete Math., vol. 214, pp. 8999, 2000.
[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, fifthprinting, Am. Elsevier, 1976.
[3] C.H. Chang, C.K. Lin, H.M. Huang, and L.H. Hsu, “The Super Laceability of the Hypercubes,” Information Processing Letters, vol. 92, no. 1, pp. 1521, 2004.
[4] F.B. Chedid, “On the Generalized Twisted Cube,” Information Processing Letters, vol. 55, pp. 4952, 1995.
[5] X.B. Chen, “Cycles Passing through Prescribed Edges in a Hypercube with Some Faulty Edges,” Information Processing Letters, vol. 104, no. 6, pp. 211215, 2007.
[6] C.C. Chen and J. Chen, “Nearly Optimal OnetoMany Parallel Routing in Star Networks,” IEEE Trans. Parallel and Distributed Systems, vol. 8, no. 12, pp. 11961202, Dec. 1997.
[7] C.C. Chen and N.F. Quimpo, “On Strongly Hamiltonian Abelian Group Graphs,” Proc. Australian Conf. Combinatorial Math., pp. 2334, 1980.
[8] P. Cull and S. Larson, “The Möbius Cubes,” Proc. Sixth IEEE Distributed Memory Computing Conf., pp. 699702, 1991.
[9] T. Dvořák and P. Gregor, “Hamiltonian Paths with Prescribed Edges in Hypercubes,” Discrete Math., vol. 307, pp. 19821998, 2007.
[10] K. Efe, “A Variation on the Hypercube with Lower Diameter,” IEEE Trans. Computers, vol. 40, no. 11, pp. 13121316, Nov. 1991.
[11] K. Efe, “The Crossed Cube Architecture for Parallel Computation,” IEEE Trans. Parallel and Distributed Systems, vol. 3, no. 5, pp.513524, Sept. 1992.
[12] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NPCompleteness. W.H. Freeman, 1979.
[13] G. Gauyacq, C. Micheneau, and A. Raspaud, “Routing in Recursive Circulant Graphs: Edge Forwarding Index and Hamiltonian Decomposition,” Proc. 24th Int'l Workshop GraphTheoretic Concepts in Computer Science (WG '98), pp. 227241, 1998.
[14] Q.P. Gu and S. Peng, “Cluster FaultTolerant Routing in Star Graphs,” Networks, vol. 35, no. 1, pp. 8390, 2000.
[15] P.A.J. Hilbers, M.R.J. Koopman, and J.L.A. van de Snepscheut, “The Twisted Cube,” PARLE: Parallel Architectures and Languages Europe, J. Bakker, A. Nijman, and P. Treleaven, eds., vol. 1, pp.152159, 1987.
[16] S.Y. Hsieh, G.H. Chen, and C.W. Ho, “FaultFree Hamiltonian Cycles in Faulty Arrangement Graphs,” IEEE Trans. Parallel and Distributed Systems, vol. 10, no. 3, pp. 223237, Mar. 1999.
[17] H.C. Hsu, T.K. Li, J.J.M. Tan, and L.H. Hsu, “Fault Hamiltonicity and Fault Hamiltonian Connectivity of the Arrangement Graphs,” IEEE Trans. Computers, vol. 53, no. 1, pp. 3953, Jan. 2004.
[18] P.L. Lai and H.C. Hsu, “On the TwoEqualDisjoint Path Cover Problem of Crossed Cubes,” Proc. Ninth Joint Int'l Conf. Information Sciences (JCIS '06), pp. 603606, Oct. 2006.
[19] H.S. Lim, J.H. Park, and K.Y. Chwa, “Embedding Trees into Recursive Circulants,” Discrete Applied Math., vol. 69, pp. 8399, 1996.
[20] C.D. Park and K.Y. Chwa, “Hamiltonian Properties on the Class of HypercubeLike Networks,” Information Processing Letters, vol. 91, pp. 1117, 2004.
[21] J.H. Park, “Hamiltonian Decomposition of Recursive Circulants,” Proc. Int'l Symp. Algorithms and Computation (ISAAC '98), pp. 297306, 1998.
[22] J.H. Park, “OnetoOne Disjoint Path Covers in Recursive Circulants,” J. Korea Information Science Soc., vol. 30, no. 12, pp.691698, 2003 (in Korean).
[23] J.H. Park, “OnetoMany Disjoint Path Covers in a Graph with Faulty Elements,” Proc. Int'l Computing and Combinatorics Conf. (COCOON '04), pp. 392401, Aug. 2004.
[24] J.H. Park, “ManytoMany Disjoint Path Covers in Double LoopNetworks,” J. Korea Information Science Soc., vol. 32, no. 8, pp. 426431, 2005 (in Korean).
[25] J.H. Park, “Unpaired ManytoMany Disjoint Path Covers in HypercubeLike Interconnection Networks,” J. Korea Information Science Soc., vol. 33, no. 10, pp. 789796, 2006 (in Korean).
[26] J.H. Park and K.Y. Chwa, “Recursive Circulants and Their Embeddings among Hypercubes,” Theoretical Computer Science, vol. 244, pp. 3562, 2000.
[27] J.H. Park, H.C. Kim, and H.S. Lim, “FaultHamiltonicity of HypercubeLike Interconnection Networks,” Proc. 19th IEEE Int'l Parallel and Distributed Processing Symp. (IPDPS '05), Apr. 2005.
[28] J.H. Park, H.C. Kim, and H.S. Lim, “ManytoMany Disjoint Path Covers in HypercubeLike Interconnection Networks with Faulty Elements,” IEEE Trans. Parallel and Distributed Systems, vol. 17, no. 3, pp. 227240, Mar. 2006.
[29] J.H. Park and J.H. Lee, Unpaired ManytoMany Disjoint Path Covers in Recursive Circulant $G(2^{m}, 4)$ , manuscript (submitted for publication).
[30] J.H. Park, H.S. Lim, and H.C. Kim, “Panconnectivity and Pancyclicity of HypercubeLike Interconnection Networks with Faulty Elements,” Theoretical Computer Science, vol. 377, nos. 13, pp.170180, 2007.
[31] N.K. Singhvi and K. Ghose, “The Mcube: A Symmetrical Cube Based Network with Twisted Links,” Proc. Ninth IEEE Int'l Parallel Processing Symp. (IPPS '95), pp. 1116, 1995.
[32] C.H. Tsai, J.J.M. Tan, Y.C. Chuang, and L.H. Hsu, “FaultFree Cycles and Links in Faulty Recursive Circulant Graphs,” Proc. ICS Workshop Algorithms and Theory of Computation, pp. 7477, 2000.
[33] C.H. Tsai, J.J.M. Tan, and L.H. Hsu, “The SuperConnected Property of Recursive Circulant Graphs,” Information Processing Letters, vol. 91, no. 6, pp. 293298, 2004.
[34] Y.C. Tseng, S.H. Chang, and J.P. Sheu, “FaultTolerant Ring Embedding in a Star Graph with Both Link and Node Failures,” IEEE Trans. Parallel and Distributed Systems, vol. 8, no. 12, pp.11851195, Dec. 1997.
[35] A.S. Vaidya, P.S.N. Rao, and S.R. Shankar, “A Class of HypercubeLike Networks,” Proc. Fifth IEEE Symp. Parallel and Distributed Processing (SPDP '93), pp. 800803, Dec. 1993.