
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
DongGuk Han, Dooho Choi, Howon Kim, "Improved Computation of Square Roots in Specific Finite Fields," IEEE Transactions on Computers, vol. 58, no. 2, pp. 188196, February, 2009.  
BibTex  x  
@article{ 10.1109/TC.2008.201, author = {DongGuk Han and Dooho Choi and Howon Kim}, title = {Improved Computation of Square Roots in Specific Finite Fields}, journal ={IEEE Transactions on Computers}, volume = {58}, number = {2}, issn = {00189340}, year = {2009}, pages = {188196}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2008.201}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Improved Computation of Square Roots in Specific Finite Fields IS  2 SN  00189340 SP188 EP196 EPD  188196 A1  DongGuk Han, A1  Dooho Choi, A1  Howon Kim, PY  2009 KW  Square roots KW  finite fields KW  efficient computation KW  cryptography. VL  58 JA  IEEE Transactions on Computers ER   
[1] A.O.L. Atkin, Probabilistic Primality Testing, summary by F.Morain, Research Report 1779, INRIA, pp. 159163, 1992.
[2] A.O.L. Atkin and F. Morain, “Elliptic Curves and Primality Proving,” Math. of Computation, vol. 61, pp. 2968, 1993.
[3] D.V. Bailey, “Computation in Optimal Extension Fields,” master thesis, http://www.wpi.edu/Pubs/ETD/Available/etd0428100133037/ unrestrictedbailey.pdf , 2008.
[4] P.S.L.M. Barreto, H.Y. Kim, B. Lynn, and M. Scott, “Efficient Algorithms for PairingBased Cryptosystems,” Proc. 22nd Ann. Int'l Cryptology Conf. (CRYPTO '02), pp. 354368, 2002.
[5] P.S.L.M. Barreto and J.F. Voloch, “Efficient Computation of Roots in Finite Fields,” J. Design, Codes and Cryptography, vol. 39, pp. 275280, 2006.
[6] D. Boneh and M. Franklin, “IdentityBased Encryption from the Weil Pairing,” Proc. 21st Ann. Int'l Cryptology Conf. (CRYPTO '01), pp. 213229, 2001.
[7] R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective. Springer, 2001.
[8] T. Itoh and S. Tsujii, “A Fast Algorithm for Computing Multiplicative Inverses in $GF(2^{m})$ Using Normal Bases,” Information and Computation, vol. 78, pp. 171177, 1988.
[9] Standard Specifications for Public Key Cryptography, IEEEStd20001363, 2000.
[10] N. Koblitz, “Elliptic Curve Cryptosystems,” Math. of Computation, vol. 48, pp. 203209, 1987.
[11] F. Kong, Z. Cai, J. Yu, and D. Li, “Improved Generalized Atkin Algorithm for Computing Square Roots in Finite Fields,” Information Processing Letters, vol. 98, no. 1, pp. 15, 2006.
[12] C. Lee and J. Lee, “A Scalable Structure for a Multiplier and an Inversion Unit in $GF(2^{m})$ ,” ETRI J., vol. 25, no. 5, pp. 315320, Oct. 2003.
[13] R. Lidl and H. Niederreiter, “Finite Field,” Encyclopedia of Math. and Its Applications, vol. 20, Cambridge Univ. Press, 1997.
[14] S. Lindhurst, “An Analysis of Shanks's Algorithm for Computing Square Roots in Finite Fields,” CRM Proc. and Lecture Notes, vol. 19, pp. 231242, 1999.
[15] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography. CRC Press, 1997.
[16] V.S. Miller, “Use of Elliptic Curves in Cryptography,” Proc. Advances in Cryptology (CRYPTO '85), pp. 417426, 1986.
[17] S. Müller, “On the Computation of Square Roots in Finite Fields,” J. Design, Codes and Cryptography, vol. 31, pp. 301312, 2004.
[18] Y. Nogami, M. Obara, and Y. Morikawa, “A Method for Distinguishing the Two Candidate Elliptic Curves in the Complex Multiplication Method,” ETRI J., vol. 28, no. 6, pp.745760, Dec. 2006.
[19] R. Schoof, “Counting Points on Elliptic Curves over Finite Fields,” J. Th'eorie des Nombres de Bordeaux, vol. 7, pp. 219254, 1995.
[20] D. Shanks, “Five NumberTheoretic Algorithms,” Proc. Second Manitoba Conf. Numerical Math., pp. 5170, 1972.
[21] A. Tonelli, “Bemerkung über die Auflösung Quadratischer Congruenzen,” Göttinger Nachrichten, pp. 344346, 1891.