
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Marius Cornea, John Harrison, Cristina Anderson, Ping Tak Peter Tang, Eric Schneider, Evgeny Gvozdev, "A Software Implementation of the IEEE 754R Decimal FloatingPoint Arithmetic Using the Binary Encoding Format," IEEE Transactions on Computers, vol. 58, no. 2, pp. 148162, February, 2009.  
BibTex  x  
@article{ 10.1109/TC.2008.209, author = {Marius Cornea and John Harrison and Cristina Anderson and Ping Tak Peter Tang and Eric Schneider and Evgeny Gvozdev}, title = {A Software Implementation of the IEEE 754R Decimal FloatingPoint Arithmetic Using the Binary Encoding Format}, journal ={IEEE Transactions on Computers}, volume = {58}, number = {2}, issn = {00189340}, year = {2009}, pages = {148162}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2008.209}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  A Software Implementation of the IEEE 754R Decimal FloatingPoint Arithmetic Using the Binary Encoding Format IS  2 SN  00189340 SP148 EP162 EPD  148162 A1  Marius Cornea, A1  John Harrison, A1  Cristina Anderson, A1  Ping Tak Peter Tang, A1  Eric Schneider, A1  Evgeny Gvozdev, PY  2009 KW  Computer arithmetic KW  multipleprecision arithmetic KW  floatingpoint arithmetic KW  decimal floatingpoint KW  computer arithmetic KW  correct rounding KW  binarydecimal conversion. VL  58 JA  IEEE Transactions on Computers ER   
[1] G. Bohlender and T. Teufel, “A Decimal FloatingPoint Processor for Optimal Arithmetic,” Computer Arithmetic: Scientific Computation and Programming Languages, pp. 3158, Teubner Stuttgart, 1987.
[2] S. Boldo and G. Melquiond, “When Double Rounding Is Odd,” Proc. 17th IMACS World Congress, Scientific Computation, Applied Math. and Simulation, 2005.
[3] W. Buchholz, “Fingers or Fists? (The Choice of Decimal or Binary Representation),” Comm. ACM, vol. 2, no. 12, pp. 311, 1959.
[4] F.Y. Busaba, C.A. Krygowski, W.H. Li, E.M. Schwarz, and S.R. Carlough, “The IBM z900 Decimal Arithmetic Unit,” Proc. 35th Asilomar Conf. Signals, Systems and Computers, vol. 2, p. 1335, Nov. 2001.
[5] M.S. Cohen, T.E. Hull, and V.C. Hamacher, “CADAC: A ControlledPrecision Decimal Arithmetic Unit,” IEEE Trans. Computers, vol. 32, no. 4, pp. 370377, Apr. 1983.
[6] M. Cornea, C. Anderson, J. Harrison, P.T.P. Tang, E. Schneider, and C. Tsen, “An Implementation of the IEEE 754R Decimal FloatingPoint Arithmetic Using the Binary Encoding Format,” Proc. 18th IEEE Symp. Computer Arithmetic (ARITH '07), pp. 2937, 2007.
[7] M.F. Cowlishaw, “Densely Packed Decimal Encoding,” IEE Proc.—Computers and Digital Techniques, vol. 149, pp. 102104, May 2002.
[8] M.F. Cowlishaw, “Decimal FloatingPoint: Algorism for Computers,” Proc. 16th IEEE Symp. Computer Arithmetic (ARITH '03), pp.104111, June 2003.
[9] M.F. Cowlishaw, The decNumber Library, http://www2.hursley. ibm.com/decimaldecnumber.pdf , 2006.
[10] A.Y. Duale, M.H. Decker, H.G. Zipperer, M. Aharoni, and T.J. Bohizic, “Decimal FloatingPoint in z9: An Implementation and Testing Perspective,” IBM J. Research and Development, http://www.research.ibm.com/journal/rd/511 duale.html, 2007.
[11] M.A. Erle, J.M. Linebarger, and M.J. Schulte, “Potential Speedup Using Decimal FloatingPoint Hardware,” Proc. 36th Asilomar Conf. Signals, Systems, and Computers, pp. 10731077, Nov. 2002.
[12] M.A. Erle and M.J. Schulte, “Decimal Multiplication via CarrySave Addition,” Proc. IEEE 14th Int'l Conf. ApplicationSpecific Systems, Architectures, and Processors (ASAP '03), pp. 348358, June 2003.
[13] European Commission, The Introduction of the Euro and the Rounding of Currency Amounts, http://europa.eu.int/comm/economy_finance/ publications/euro_papers/2001eup22en.pdf , Mar. 1998.
[14] S.A. Figueroa, “When Is Double Rounding Innocuous?” ACM SIGNUM Newsletter, vol. 20, no. 3, pp. 2126, 1995.
[15] D. Goldberg, “What Every Computer Scientist Should Know aboutFloatingPoint Arithmetic,” ACM Computing Surveys, vol. 23, pp. 548, 1991.
[16] G. Gray, “UNIVAC I Instruction Set,” Unisys History Newsletter, vol. 2, no. 3, 2001.
[17] T. Horel and G. Lauterbach, “UltraSPARCIII: Designing ThirdGeneration 64Bit Performance,” IEEE Micro, vol. 19, no. 3, pp.7385, May/June 1999.
[18] IBM Corp., The Telco Benchmark, http://www2.hursley.ibm.com/decimaltelco.html , Mar. 1998.
[19] ANSI/IEEE Standard for FloatingPoint Arithmetic 7541985. IEEE, 1985.
[20] Draft Standard for FloatingPoint Arithmetic P754, Draft 1.2.5., IEEE, http://www.validlab.com/754R/drafts/archive 20061004.pdf, Oct. 2006.
[21] ISO 1989:2002 Programming Languages—COBOL, ISO Standards, JTC 1/SC 22, 2002.
[22] C# Language Specification, Standard ECMA334, http://www.ecmainternational.org/publications/ files/ECMASTEcma334.pdf, 2005.
[23] Sun Corp., Class BigDecimal, http://java.sun.com/j2se/1.4.2/docs/api/ java/mathBigDecimal.html, 2008.
[24] P. Tang, “BinaryInteger Decimal Encoding for Decimal Floating Point,” technical report, Intel Corp., http://754r.ucbtest.org/issues/decimalbid_rationale.pdf .
[25] XML Scheme Part 2: Datatypes Second Edition, World Wide Web Consortium (W3C) recommendation, http://www.w3.org/Tr/2004RECxmlschema220041028 /, Oct. 2004.
[26] L. Wang, “Processor Support for Decimal FloatingPoint Arithmetic,” technical report, Electrical and Computer Eng. Dept., Univ. of Wisconsin, Madison, year?
[27] M.H. Weik, The ENIAC Story, http://ftp:.arl.mil/~mike/comphisteniacstory.html , 2007.