
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Yeow Meng Chee, Alan C. H. Ling, "Limit on the Addressability of FaultTolerant Nanowire Decoders," IEEE Transactions on Computers, vol. 58, no. 1, pp. 6068, January, 2009.  
BibTex  x  
@article{ 10.1109/TC.2008.130, author = {Yeow Meng Chee and Alan C. H. Ling}, title = {Limit on the Addressability of FaultTolerant Nanowire Decoders}, journal ={IEEE Transactions on Computers}, volume = {58}, number = {1}, issn = {00189340}, year = {2009}, pages = {6068}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2008.130}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Limit on the Addressability of FaultTolerant Nanowire Decoders IS  1 SN  00189340 SP60 EP68 EPD  6068 A1  Yeow Meng Chee, A1  Alan C. H. Ling, PY  2009 KW  Systems and Information Theory KW  General KW  Control Structure Reliability KW  Testing KW  and FaultTolerance VL  58 JA  IEEE Transactions on Computers ER   
[1] A.M. Morales and C.M. Lieber, “A Laser Ablation Method for Synthesis of Crystalline Semiconductor Nanowires,” Science, vol. 279, pp. 208211, 1998.
[2] C. Dekker, “Carbon Nanotubes as Molecular Quantum Wires,” Physics Today, vol. 52, pp. 2228, 1999.
[3] Y. Cui, C. Lieber, L. Lauhon, M. Gudiksen, and J. Wang, “Diameter Controlled Synthesis of Single Crystal Silicon Nanowires,” Applied Physics Letters, vol. 78, pp. 22142216, 2001.
[4] N.A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, P.M. Petroff, and J.R. Heath, “UltrahighDensity Nanowire Lattices and Circuits,” Science, vol. 300, pp. 112115, 2003.
[5] E. JohnstonHalperin, R. Beckman, Y. Luo, N. Melosh, J. Green, and J. Heath, “Fabrication of Conducting Silicon Nanowire Arrays,” Applied Physics Letters, vol. 96, pp. 59215923, 2004.
[6] J.R. Heath, P.J. Kuekes, G.S. Snider, and R.S. Williams, “A DefectTolerant Computer Architecture: Opportunities for Nanotechnology,” Science, vol. 280, pp. 17161721, 1998.
[7] J. Chen, M.A. Reed, A.M. Rawlett, and J.M. Tour, “Large OnOff Ratios and Negative Differential Resistance in a Molecular Electronic Device,” Science, vol. 286, pp. 15501552, 1999.
[8] P.J. Kuekes, S. Williams, and J.R. Heath, Molecular Wire Crossbar Memory, US patent 6,128,214, 2000.
[9] T. Rueckes, K. Kim, E. Joselevich, G. Tseng, C. Cheung, and C. Lieber, “Carbon Nanotube Based Nonvolatile Random Access Memory for Molecular Computing,” Science, vol. 289, pp. 9497, 2000.
[10] P.J. Kuekes and S. Williams, Demultiplexer for a Molecular Wire Crossbar Network (MWCN DEMUX), US patent 6,256,767 B1, 2001.
[11] P.J. Kuekes, S. Williams, and J.R. Heath, Molecular Wire Crossbar Interconnect (MWCI) for Signal Routing and Communications, USpatent 6,314,019 B1, 2001.
[12] M.A. Reed, J. Chen, A.M. Rawlett, D.W. Price, and J.M. Tour, “Molecular Random Access Memory Cell,” Applied Physics Letters, vol. 78, no. 23, pp. 37353737, 2001.
[13] J. Chen, W. Wang, J. Klemic, M.A. Reed, W. Axelrod, D.M. Kaschak, A.M. Rawlett, D.W. Price, S.M. Dirk, J.M. Tour, D.S. Grubisha, and D.W. Bennett, “Molecular Wires, Switches, and Memories,” Annals of the New York Academy of Sciences, vol. 960, pp. 6999, 2002.
[14] Y. Luo, P.C. Collier, J.O. Jeppesen, E. Delonno, G. Ho, J. Perkins, H.R. Tseng, T. Yamamoto, J.F. Stoddart, and J.R. Heath, “TwoDimensional Molecular Electronics Circuits,” ChemPhysChem, vol. 3, no. 6, pp. 519525, 2002.
[15] Y. Chen, G.Y. Jung, D.A.A. Ohlberg, X. Li, D.R. Stewart, J.O. Jeppeson, K.A. Nielson, J.F. Stoddart, and R.S. Williams, “Nanoscale MolecularSwitch Crossbar Circuits,” Nanotechnology, vol. 14, pp. 462468, 2003.
[16] A. DeHon, “ArrayBased Architecture for FETBased Nanoscale Electronics,” IEEE Trans. Nanotechnology, vol. 2, pp. 2332, 2003.
[17] A. DeHon, S.C. Goldstein, P. Kuekes, and P. Lincoln, “Nonphotolithographic Nanoscale Memory Density Prospects,” IEEE Trans. Nanotechnology, vol. 4, pp. 215228, 2005.
[18] B. Gojman, E. Rachlin, and J.E. Savage, “Evaluation of Design Strategies for Stochastically Assembled Nanoarray Memories,” ACM J. Emerging Technologies in Computing Systems, vol. 1, no. 2, pp. 73108, 2005.
[19] D. Whang, S. Jin, Y. Wu, and C.M. Lieber, “LargeScale Hierarchical Organization of Nanowire Arrays for Integrated Nanosystems,” Nano Letters, vol. 3, no. 9, pp. 12551259, 2003.
[20] C.P. Collier, E.W. Wong, M. Belohradský, F.M. Raymo, J.F. Stoddart, P.J. Kuekes, R.S. Williams, and J.R. Heath, “Electronically Configurable MolecularBased Logic Gates,” Science, vol. 285, pp. 391394, 1999.
[21] C.P. Collier, G. Mattersteig, E.W. Wong, Y. Luo, K. Beverly, J. Sampaio, F. Raymo, J.F. Stoddart, and J.R. Heath, “A [2]CatenateBased Solid State Electronically Reconfigurable Switch,” Science, vol. 290, pp. 11721175, 2000.
[22] X. Duan, Y. Huang, and C.M. Lieber, “Nonvolatile Memory and Programmable Logic from MoleculeGated Nanowires,” Nano Letters, vol. 2, no. 5, pp. 487490, 2002.
[23] P.J. Kuekes, W. Robinett, G. Seroussi, and R.S. Williams, “DefectTolerant Interconnect to Nanoelectronic Circuits: Internally Redundant Demultiplexers Based on ErrorCorrecting Codes,” Nanotechnology, vol. 16, no. 6, pp. 869882, 2005.
[24] E. Rachlin and J.E. Savage, “Nanowire Addressing in the Face of Uncertainty,” Proc. IEEE CS Ann. Symp. Emerging VLSI Technologies and Architectures (ISVLSI '06), pp. 225230, 2006.
[25] E. Rachlin and J.E. Savage, “Nanowire Addressing with Randomized Contact Decoders,” Proc. IEEE/ACM Int'l Conf. ComputerAided Design (ICCAD '06), pp. 735742, 2006.
[26] A. DeHon, P. Lincoln, and J.E. Savage, “Stochastic Assembly of Sublithographic Nanoscale Interfaces,” IEEE Trans. Nanotechnology, vol. 2, no. 3, pp. 165174, 2003.
[27] A. DeHon, C.M. Lieber, P. Lincoln, and J.E. Savage, Stochastic Assembly of Sublithographic Nanoscale Interfaces, US patent 6,900,479 B2, 2005.
[28] C.S. Cojocaru, J.M. Padovani, T. Wade, C. Mandoli, G. Jaskierowicz, J.E. Wegrowe, A.F. Morral, and D. Pribat, “Conformal Anodic Oxidation of Aluminium Thin Films,” Nano Letters, vol. 5, no. 4, pp. 675680, 2005.
[29] J. Woodruff, J. Ratchford, H. Jagannathan, H. Adhikari, H.S.P. Wong, and C.E.D. Chidsey, “Deterministic Nanowire Growth,” Proc. SRC Techcon Conf., pp. 2224, 2005.
[30] Y. Huang, X. Duan, Q. Wei, and C.M. Lieber, “Directed Assembly of OneDimensional Nanostructures into Functional Networks,” Science, vol. 291, pp. 630633, 2001.
[31] F. Kim, S. Kwan, J. Akana, and P. Yang, “LangmuirBlodgett Nanorod Assembly,” pp. 43604361, 2001.
[32] M.T. Björk, B.J. Ohlsson, T. Sass, A.I. Persson, C. Thelander, M.H. Magnusson, K. Deppert, L.R. Wallenberg, and L. Samuelson, “OneDimensional Steeplechase for Electrons Realized,” Nano Letters, vol. 2, no. 2, pp. 8789, 2002.
[33] M.S. Gudiksen, L.J. Lauhon, J. Wang, D.C. Smith, and C.M. Lieber, “Growth of Nanowire Superlattice Structures for Nanoscale Photonics and Electronics,” Nature, vol. 415, pp. 617620, 2002.
[34] Y. Wu, R. Fan, and P. Yang, “BlockbyBlock Growth of SingleCrystal Si/SiGe Superlattice Nanowires,” Nano Letters, vol. 2, no. 2, pp. 8386, 2002.
[35] L.J. Lauhon, M.S. Gudiksen, D. Wang, and C.M. Lieber, “Epitaxial CoreShell and CoreMultishell Nanowire Heterostructures,” Nature, vol. 420, pp. 5761, 2002.
[36] J.E. Savage, E. Rachlin, A. DeHon, C.M. Lieber, and Y. Wu, “Radial Addressing of Nanowires,” ACM J. Emerging Technologies in Computing Systems, vol. 2, no. 2, pp. 129154, 2006.
[37] D.J. Balding and D.C. Torney, “Optimal Pooling Designs with Error Detection,” J. Combinatorial Theory Series A, vol. 74, no. 1, pp. 131140, 1996.
[38] Y.M. Chee, “TuránType Problems in Group Testing, Coding Theory and Cryptography,” PhD dissertation, Univ. of Waterloo, Ontario, Canada, June 1996.
[39] R.J.R. Abel and M. Greig, “BIBDs with Small Block Size,” The CRC Handbook of Combinatorial Designs, second ed., C.J. Colbourn and J.H. Dinitz, eds., pp. 7179, CRC Press, 2007.
[40] C.J. Colbourn and R. Mathon, “Steiner Systems,” The CRC Handbook of Combinatorial Designs, second ed., C.J. Colbourn and J.H. Dinitz, eds., pp. 102110, CRC Press, 2007.
[41] R. Craigen and H. Kharaghani, “Hadamard Matrices and Hadamard Designs,” The CRC Handbook of Combinatorial Designs, second ed., C.J. Colbourn and J.H. Dinitz, eds., pp.273280, CRC Press, 2007.
[42] Y.J. Ionin and T. van Trung, “Symmetric Designs,” The CRC Handbook of Combinatorial Designs, second ed., C.J. Colbourn and J.H. Dinitz, eds., pp. 110124, CRC Press, 2007.
[43] G.B. Khosrovshahi and R. Laue, “$t\hbox{}{\rm Designs}$ with $t\geq 3$ ,” The CRC Handbook of Combinatorial Designs, second ed., C.J. Colbourn and J.H. Dinitz, eds., pp. 79101, CRC Press, 2007.
[44] R. Mathon and A. Rosa, “$2\hbox{}(v, k, \lambda)$ Designs of Small Order,” The CRC Handbook of Combinatorial Designs, second ed., C.J. Colbourn and J.H. Dinitz, eds., pp. 2558, CRC Press, 2007.
[45] G.H.J. van Rees, “$(r, \lambda)\hbox{}{\rm Designs}$ ,” The CRC Handbook of Combinatorial Designs, second ed., C.J. Colbourn and J.H. Dinitz, eds., pp.582584, CRC Press, 2007.
[46] D.C. Torney, “Pooling Designs,” The CRC Handbook of Combinatorial Designs, second ed., C.J. Colbourn and J.H. Dinitz, eds., pp. 574575, CRC Press, 2007.
[47] E. Sperner, “Ein Satz über Untermengen einer endlichen Menge,” Matematische Zeitschrift, vol. 27, pp. 544548, 1928.
[48] B. Bollobás, Combinatorics. Cambridge Univ. Press, 1986.
[49] I. Anderson, Combinatorics of Finite Sets. Oxford Univ. Press, 1987.
[50] G.O.H. Katona, “Strong Qualitative Independence,” Discrete Applied Math., vol. 137, no. 1, pp. 8795, 2004.
[51] D.K. Pradhan, “A New Class of ErrorCorrecting/Detecting Codes for FaultTolerant Computer Applications,” IEEE Trans. Computers, vol. 29, no. 6, pp. 471481, June 1980.
[52] A.G. D'yachkov, V.V. Rykov, and A.M. Rashad, “Superimposed Distance Codes,” Problems of Control Information Theory/Problemy Upravlen. Teor. Inform., vol. 18, pp. 237250, 1989.
[53] A.J. Macula, “ErrorCorrecting Nonadaptive Group Testing with $d^{e}\hbox{}{\rm Disjunct}$ Matrices,” Discrete Applied Math., vol. 80, pp. 217222, 1997.
[54] D.R. Stinson and R. Wei, “Generalized CoverFree Families,” Discrete Math., vol. 279, pp. 463477, 2004.
[55] M. Plotkin, “Binary Codes with Specified Minimum Distance,” IRE Trans. Information Technology, vol. 6, pp. 445450, 1960.
[56] V.I. Levenshtein, “UpperBound Estimates for FixedWeight Codes,” Problems of Information Transmission, vol. 7, no. 4, pp.281287, 1971.
[57] C.S. Laih and C.N. Yang, “On the Analysis and Design of Group Theoretical $t\hbox{}{\rm syEC/AUED}$ Codes,” IEEE Trans. Computers, vol. 45, no. 1, pp. 103108, Jan. 1996.
[58] M.R. Best, A.E. Brouwer, F.J. MacWilliams, A.M. Odlyzko, and N.J.A. Sloane, “Bounds for Binary Codes of Length Less Than 25,” IEEE Trans. Information Theory, vol. 24, no. 1, pp. 8193, 1978.
[59] E.M. Rains and N.J.A. Sloane, “Table of Constant Weight Binary Codes,” http://www.research.att.com/~njas/codesAndw /, 2008.
[60] S. AlBassam and B. Bose, “Design of Efficient ErrorCorrecting Balanced Codes,” IEEE Trans. Computers, vol. 42, no. 10, pp. 12611266, Oct. 1993.
[61] M.C. Lin, “Constant Weight Codes for Correcting Symmetric Errors and Detecting Unidirectional Errors,” IEEE Trans. Computers, vol. 42, no. 11, pp. 12941302, Nov. 1993.
[62] D. Nikolos, N. Gaitanis, and G. Philokyprou, “Systematic $t\hbox{}\hbox{Error}$ Correcting/All Unidirectional Error Detecting Codes,” IEEE Trans. Computers, vol. 35, no. 5, pp. 394402, May 1986.
[63] F.J.H. Böinck and H.C.A. van Tilborg, “Constructions and Bounds for Systematic $t{\rm EC/AUED}$ Codes,” IEEE Trans. Information Theory, vol. 36, no. 6, pp. 13811390, 1990.