The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.01 - January (2009 vol.58)
pp: 60-68
Yeow Meng Chee , Nanyang Technological University, Singapore
Alan C. H. Ling , University of Vermont, Burlington
ABSTRACT
Although prone to fabrication error, the nanowire crossbar is a promising candidate compoent for next generation nanometer-scale circuits. In the nanowire crossbar architecture, nanowires are addressed by controlling voltages on the mesowires. For area efficiency, we are interested in the maximum number of nanowires $N(m,e)$ that can be addressed by $m$ mesowires, in the face of up to $e$ fabrication errors. Asymptotically tight bounds on $N(m,e)$ are established in this paper. In particular, it is shown that $N(m,e) = \Theta(2^m / m^{e+1/2})$. Interesting observations are made on the equivalence between this problem and the problem of constructing optimal EC/AUED codes, superimposed distance codes, pooling designs, and diffbounded set systems. Results in this paper also improve upon those in the EC/AUEC codes literature.
INDEX TERMS
Systems and Information Theory, General, Control Structure Reliability, Testing, and Fault-Tolerance
CITATION
Yeow Meng Chee, Alan C. H. Ling, "Limit on the Addressability of Fault-Tolerant Nanowire Decoders", IEEE Transactions on Computers, vol.58, no. 1, pp. 60-68, January 2009, doi:10.1109/TC.2008.130
REFERENCES
[1] A.M. Morales and C.M. Lieber, “A Laser Ablation Method for Synthesis of Crystalline Semiconductor Nanowires,” Science, vol. 279, pp. 208-211, 1998.
[2] C. Dekker, “Carbon Nanotubes as Molecular Quantum Wires,” Physics Today, vol. 52, pp. 22-28, 1999.
[3] Y. Cui, C. Lieber, L. Lauhon, M. Gudiksen, and J. Wang, “Diameter Controlled Synthesis of Single Crystal Silicon Nanowires,” Applied Physics Letters, vol. 78, pp. 2214-2216, 2001.
[4] N.A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, P.M. Petroff, and J.R. Heath, “Ultrahigh-Density Nanowire Lattices and Circuits,” Science, vol. 300, pp. 112-115, 2003.
[5] E. Johnston-Halperin, R. Beckman, Y. Luo, N. Melosh, J. Green, and J. Heath, “Fabrication of Conducting Silicon Nanowire Arrays,” Applied Physics Letters, vol. 96, pp. 5921-5923, 2004.
[6] J.R. Heath, P.J. Kuekes, G.S. Snider, and R.S. Williams, “A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology,” Science, vol. 280, pp. 1716-1721, 1998.
[7] J. Chen, M.A. Reed, A.M. Rawlett, and J.M. Tour, “Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device,” Science, vol. 286, pp. 1550-1552, 1999.
[8] P.J. Kuekes, S. Williams, and J.R. Heath, Molecular Wire Crossbar Memory, US patent 6,128,214, 2000.
[9] T. Rueckes, K. Kim, E. Joselevich, G. Tseng, C. Cheung, and C. Lieber, “Carbon Nanotube Based Nonvolatile Random Access Memory for Molecular Computing,” Science, vol. 289, pp. 94-97, 2000.
[10] P.J. Kuekes and S. Williams, Demultiplexer for a Molecular Wire Crossbar Network (MWCN DEMUX), US patent 6,256,767 B1, 2001.
[11] P.J. Kuekes, S. Williams, and J.R. Heath, Molecular Wire Crossbar Interconnect (MWCI) for Signal Routing and Communications, USpatent 6,314,019 B1, 2001.
[12] M.A. Reed, J. Chen, A.M. Rawlett, D.W. Price, and J.M. Tour, “Molecular Random Access Memory Cell,” Applied Physics Letters, vol. 78, no. 23, pp. 3735-3737, 2001.
[13] J. Chen, W. Wang, J. Klemic, M.A. Reed, W. Axelrod, D.M. Kaschak, A.M. Rawlett, D.W. Price, S.M. Dirk, J.M. Tour, D.S. Grubisha, and D.W. Bennett, “Molecular Wires, Switches, and Memories,” Annals of the New York Academy of Sciences, vol. 960, pp. 69-99, 2002.
[14] Y. Luo, P.C. Collier, J.O. Jeppesen, E. Delonno, G. Ho, J. Perkins, H.R. Tseng, T. Yamamoto, J.F. Stoddart, and J.R. Heath, “Two-Dimensional Molecular Electronics Circuits,” ChemPhysChem, vol. 3, no. 6, pp. 519-525, 2002.
[15] Y. Chen, G.-Y. Jung, D.A.A. Ohlberg, X. Li, D.R. Stewart, J.O. Jeppeson, K.A. Nielson, J.F. Stoddart, and R.S. Williams, “Nanoscale Molecular-Switch Crossbar Circuits,” Nanotechnology, vol. 14, pp. 462-468, 2003.
[16] A. DeHon, “Array-Based Architecture for FET-Based Nanoscale Electronics,” IEEE Trans. Nanotechnology, vol. 2, pp. 23-32, 2003.
[17] A. DeHon, S.C. Goldstein, P. Kuekes, and P. Lincoln, “Nonphotolithographic Nanoscale Memory Density Prospects,” IEEE Trans. Nanotechnology, vol. 4, pp. 215-228, 2005.
[18] B. Gojman, E. Rachlin, and J.E. Savage, “Evaluation of Design Strategies for Stochastically Assembled Nanoarray Memories,” ACM J. Emerging Technologies in Computing Systems, vol. 1, no. 2, pp. 73-108, 2005.
[19] D. Whang, S. Jin, Y. Wu, and C.M. Lieber, “Large-Scale Hierarchical Organization of Nanowire Arrays for Integrated Nanosystems,” Nano Letters, vol. 3, no. 9, pp. 1255-1259, 2003.
[20] C.P. Collier, E.W. Wong, M. Belohradský, F.M. Raymo, J.F. Stoddart, P.J. Kuekes, R.S. Williams, and J.R. Heath, “Electronically Configurable Molecular-Based Logic Gates,” Science, vol. 285, pp. 391-394, 1999.
[21] C.P. Collier, G. Mattersteig, E.W. Wong, Y. Luo, K. Beverly, J. Sampaio, F. Raymo, J.F. Stoddart, and J.R. Heath, “A [2]Catenate-Based Solid State Electronically Reconfigurable Switch,” Science, vol. 290, pp. 1172-1175, 2000.
[22] X. Duan, Y. Huang, and C.M. Lieber, “Nonvolatile Memory and Programmable Logic from Molecule-Gated Nanowires,” Nano Letters, vol. 2, no. 5, pp. 487-490, 2002.
[23] P.J. Kuekes, W. Robinett, G. Seroussi, and R.S. Williams, “Defect-Tolerant Interconnect to Nanoelectronic Circuits: Internally Redundant Demultiplexers Based on Error-Correcting Codes,” Nanotechnology, vol. 16, no. 6, pp. 869-882, 2005.
[24] E. Rachlin and J.E. Savage, “Nanowire Addressing in the Face of Uncertainty,” Proc. IEEE CS Ann. Symp. Emerging VLSI Technologies and Architectures (ISVLSI '06), pp. 225-230, 2006.
[25] E. Rachlin and J.E. Savage, “Nanowire Addressing with Randomized Contact Decoders,” Proc. IEEE/ACM Int'l Conf. Computer-Aided Design (ICCAD '06), pp. 735-742, 2006.
[26] A. DeHon, P. Lincoln, and J.E. Savage, “Stochastic Assembly of Sublithographic Nanoscale Interfaces,” IEEE Trans. Nanotechnology, vol. 2, no. 3, pp. 165-174, 2003.
[27] A. DeHon, C.M. Lieber, P. Lincoln, and J.E. Savage, Stochastic Assembly of Sublithographic Nanoscale Interfaces, US patent 6,900,479 B2, 2005.
[28] C.S. Cojocaru, J.M. Padovani, T. Wade, C. Mandoli, G. Jaskierowicz, J.E. Wegrowe, A.F. Morral, and D. Pribat, “Conformal Anodic Oxidation of Aluminium Thin Films,” Nano Letters, vol. 5, no. 4, pp. 675-680, 2005.
[29] J. Woodruff, J. Ratchford, H. Jagannathan, H. Adhikari, H.-S.P. Wong, and C.E.D. Chidsey, “Deterministic Nanowire Growth,” Proc. SRC Techcon Conf., pp. 22-24, 2005.
[30] Y. Huang, X. Duan, Q. Wei, and C.M. Lieber, “Directed Assembly of One-Dimensional Nanostructures into Functional Networks,” Science, vol. 291, pp. 630-633, 2001.
[31] F. Kim, S. Kwan, J. Akana, and P. Yang, “Langmuir-Blodgett Nanorod Assembly,” pp. 4360-4361, 2001.
[32] M.T. Björk, B.J. Ohlsson, T. Sass, A.I. Persson, C. Thelander, M.H. Magnusson, K. Deppert, L.R. Wallenberg, and L. Samuelson, “One-Dimensional Steeplechase for Electrons Realized,” Nano Letters, vol. 2, no. 2, pp. 87-89, 2002.
[33] M.S. Gudiksen, L.J. Lauhon, J. Wang, D.C. Smith, and C.M. Lieber, “Growth of Nanowire Superlattice Structures for Nanoscale Photonics and Electronics,” Nature, vol. 415, pp. 617-620, 2002.
[34] Y. Wu, R. Fan, and P. Yang, “Block-by-Block Growth of Single-Crystal Si/SiGe Superlattice Nanowires,” Nano Letters, vol. 2, no. 2, pp. 83-86, 2002.
[35] L.J. Lauhon, M.S. Gudiksen, D. Wang, and C.M. Lieber, “Epitaxial Core-Shell and Core-Multishell Nanowire Heterostructures,” Nature, vol. 420, pp. 57-61, 2002.
[36] J.E. Savage, E. Rachlin, A. DeHon, C.M. Lieber, and Y. Wu, “Radial Addressing of Nanowires,” ACM J. Emerging Technologies in Computing Systems, vol. 2, no. 2, pp. 129-154, 2006.
[37] D.J. Balding and D.C. Torney, “Optimal Pooling Designs with Error Detection,” J. Combinatorial Theory Series A, vol. 74, no. 1, pp. 131-140, 1996.
[38] Y.M. Chee, “Turán-Type Problems in Group Testing, Coding Theory and Cryptography,” PhD dissertation, Univ. of Waterloo, Ontario, Canada, June 1996.
[39] R.J.R. Abel and M. Greig, “BIBDs with Small Block Size,” The CRC Handbook of Combinatorial Designs, second ed., C.J. Colbourn and J.H. Dinitz, eds., pp. 71-79, CRC Press, 2007.
[40] C.J. Colbourn and R. Mathon, “Steiner Systems,” The CRC Handbook of Combinatorial Designs, second ed., C.J. Colbourn and J.H. Dinitz, eds., pp. 102-110, CRC Press, 2007.
[41] R. Craigen and H. Kharaghani, “Hadamard Matrices and Hadamard Designs,” The CRC Handbook of Combinatorial Designs, second ed., C.J. Colbourn and J.H. Dinitz, eds., pp.273-280, CRC Press, 2007.
[42] Y.J. Ionin and T. van Trung, “Symmetric Designs,” The CRC Handbook of Combinatorial Designs, second ed., C.J. Colbourn and J.H. Dinitz, eds., pp. 110-124, CRC Press, 2007.
[43] G.B. Khosrovshahi and R. Laue, “$t\hbox{-}{\rm Designs}$ with $t\geq 3$ ,” The CRC Handbook of Combinatorial Designs, second ed., C.J. Colbourn and J.H. Dinitz, eds., pp. 79-101, CRC Press, 2007.
[44] R. Mathon and A. Rosa, “$2\hbox{-}(v, k, \lambda)$ Designs of Small Order,” The CRC Handbook of Combinatorial Designs, second ed., C.J. Colbourn and J.H. Dinitz, eds., pp. 25-58, CRC Press, 2007.
[45] G.H.J. van Rees, “$(r, \lambda)\hbox{-}{\rm Designs}$ ,” The CRC Handbook of Combinatorial Designs, second ed., C.J. Colbourn and J.H. Dinitz, eds., pp.582-584, CRC Press, 2007.
[46] D.C. Torney, “Pooling Designs,” The CRC Handbook of Combinatorial Designs, second ed., C.J. Colbourn and J.H. Dinitz, eds., pp. 574-575, CRC Press, 2007.
[47] E. Sperner, “Ein Satz über Untermengen einer endlichen Menge,” Matematische Zeitschrift, vol. 27, pp. 544-548, 1928.
[48] B. Bollobás, Combinatorics. Cambridge Univ. Press, 1986.
[49] I. Anderson, Combinatorics of Finite Sets. Oxford Univ. Press, 1987.
[50] G.O.H. Katona, “Strong Qualitative Independence,” Discrete Applied Math., vol. 137, no. 1, pp. 87-95, 2004.
[51] D.K. Pradhan, “A New Class of Error-Correcting/Detecting Codes for Fault-Tolerant Computer Applications,” IEEE Trans. Computers, vol. 29, no. 6, pp. 471-481, June 1980.
[52] A.G. D'yachkov, V.V. Rykov, and A.M. Rashad, “Superimposed Distance Codes,” Problems of Control Information Theory/Problemy Upravlen. Teor. Inform., vol. 18, pp. 237-250, 1989.
[53] A.J. Macula, “Error-Correcting Nonadaptive Group Testing with $d^{e}\hbox{-}{\rm Disjunct}$ Matrices,” Discrete Applied Math., vol. 80, pp. 217-222, 1997.
[54] D.R. Stinson and R. Wei, “Generalized Cover-Free Families,” Discrete Math., vol. 279, pp. 463-477, 2004.
[55] M. Plotkin, “Binary Codes with Specified Minimum Distance,” IRE Trans. Information Technology, vol. 6, pp. 445-450, 1960.
[56] V.I. Levenshtein, “Upper-Bound Estimates for Fixed-Weight Codes,” Problems of Information Transmission, vol. 7, no. 4, pp.281-287, 1971.
[57] C.-S. Laih and C.-N. Yang, “On the Analysis and Design of Group Theoretical $t\hbox{-}{\rm syEC/AUED}$ Codes,” IEEE Trans. Computers, vol. 45, no. 1, pp. 103-108, Jan. 1996.
[58] M.R. Best, A.E. Brouwer, F.J. MacWilliams, A.M. Odlyzko, and N.J.A. Sloane, “Bounds for Binary Codes of Length Less Than 25,” IEEE Trans. Information Theory, vol. 24, no. 1, pp. 81-93, 1978.
[59] E.M. Rains and N.J.A. Sloane, “Table of Constant Weight Binary Codes,” http://www.research.att.com/~njas/codesAndw /, 2008.
[60] S. Al-Bassam and B. Bose, “Design of Efficient Error-Correcting Balanced Codes,” IEEE Trans. Computers, vol. 42, no. 10, pp. 1261-1266, Oct. 1993.
[61] M.-C. Lin, “Constant Weight Codes for Correcting Symmetric Errors and Detecting Unidirectional Errors,” IEEE Trans. Computers, vol. 42, no. 11, pp. 1294-1302, Nov. 1993.
[62] D. Nikolos, N. Gaitanis, and G. Philokyprou, “Systematic $t\hbox{-}\hbox{Error}$ Correcting/All Unidirectional Error Detecting Codes,” IEEE Trans. Computers, vol. 35, no. 5, pp. 394-402, May 1986.
[63] F.J.H. Böinck and H.C.A. van Tilborg, “Constructions and Bounds for Systematic $t{\rm EC/AUED}$ Codes,” IEEE Trans. Information Theory, vol. 36, no. 6, pp. 1381-1390, 1990.
20 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool