
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Shaoqiang Bi, Warren J. Gross, "The MixedRadix Chinese Remainder Theorem and Its Applications to Residue Comparison," IEEE Transactions on Computers, vol. 57, no. 12, pp. 16241632, December, 2008.  
BibTex  x  
@article{ 10.1109/TC.2008.126, author = {Shaoqiang Bi and Warren J. Gross}, title = {The MixedRadix Chinese Remainder Theorem and Its Applications to Residue Comparison}, journal ={IEEE Transactions on Computers}, volume = {57}, number = {12}, issn = {00189340}, year = {2008}, pages = {16241632}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2008.126}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  The MixedRadix Chinese Remainder Theorem and Its Applications to Residue Comparison IS  12 SN  00189340 SP1624 EP1632 EPD  16241632 A1  Shaoqiang Bi, A1  Warren J. Gross, PY  2008 KW  Computer arithmetic KW  Residue number system KW  RNS KW  Chinese Remainder Theorem KW  Residue comparison. KW  MixedRadix conversion KW  FPGA VL  57 JA  IEEE Transactions on Computers ER   
[1] N. Szabo and R. Tanaka, Residue Arithmetic and Its Applications to Computer Technology. McGrawHill, 1967.
[2] D.D. Miller, R.E. Altschul, J.R. King, and J.N. Polky, “Analysis of the Residue Class Core Function of Akushskii, Burcev and Pak,” Residue Number System Arithmetic, Modern Applications in Digital Signal Processing, M.A. Soderstrand, W.C. Jenkins, G.A. Jullien, and F.J. Taylor, eds., pp. 390402, IEEE Press, 1985.
[3] M. Lu and J. Chiang, “A Novel Division Algorithm for the Residue Number System,” IEEE Trans. Computers, vol. 41, no. 8, pp. 10261032, Aug. 1992.
[4] G. Dimauro, S. Impedovo, and G. Pirlo, “A New Technique for Fast Number Comparison in Residue Number System,” IEEE Trans. Computers, vol. 42, no. 5, pp. 608612, May 1993.
[5] Y. Wang, X. Song, and M. Aboulhamid, “A New Algorithm for RNS Magnitude Comparison Based on New Chinese Remainder Theorem II,” Proc. Ninth Great Lakes Symp. VLSI (GSLVLSI '99), pp. 362365, 1999.
[6] C.H. Huang, “A Fully Parallel MixedRadix Conversion Algorithm for Residue Number Applications,” IEEE Trans. Computers, vol. 32, no. 4, pp. 398402, Apr. 1983.
[7] W. Wang, M.N.S. Swamy, M.O. Ahmad, and Y. Wang, “A Study of ResiduetoBinary Converters for ThreeModuli Sets,” IEEE Trans. Computers. vol. 50, no. 2, pp. 235243, Feb. 2003.
[8] P.V.A. Mohan, “Comments on “ResiduetoBinary Converters Based on New Chinese Remainder Theorem”,” IEEE Trans. Circuits and Systems, Part II, vol. 47, no. 12, p. 1541, Dec. 2000.
[9] P.V.A. Mohan, “Evaluation of Fast Conversion Techniques for BinaryResidue Number Systems,” IEEE Trans. Computers, vol. 45, no. 10, pp. 11071109, Oct. 1998.
[10] P.V.A. Mohan, “Comments on 'Breaking the 2nBit CarryPropagation Barrier in Residue to Binary Conversion for the $[2^{n}  1, 2^{n}, 2^{n} + 1]$ Moduli Set',” IEEE Trans. Computers, vol. 48, no. 8, p.1031, Aug. 2001.
[11] W.K. Jenkins and J.V. Krogmeier, “The Design of DualMode Complex Signal Processors Based on Quadratic Modular Number Codes,” IEEE Trans. Circuits and Systems, vol. 34, pp. 354364, 1987.
[12] S. Andraros and H. Ahmad, “A New Efficient Memoryless Residue to Binary Converter,” IEEE Trans. Circuits and Systems, vol. 35, pp. 14411444, Nov. 1988.
[13] M. Bhardwaj, A.B. Premkumar, and T. Srikanthan, “Breaking the 2nbit Carry Propagation Barrier in Residue to Binary Conversion for the $\{2^{n}  1, 2^{n}, 2^{n} + 1\}$ Modula Set,” IEEE Trans. Circuits and Systems, Part I, vol. 45, no. 9, pp. 9981002, Sept. 1998.
[14] M. Bhardwaj, T. Srikanthan, and T. Clarke, “A Residue Converter for the 4Moduli Superset $\{2^{n}  1, 2^{n}, 2^{n} + 1, 2^{n + 1} + 1\}$ ,” Proc. 14th IEEE Symp. Computer Arithmetic, Apr. 1999.
[15] A. Mohan, RNS: Algorithms and Architectures. Kluwer Academic Publishers, 2002.
[16] B. Bernardson, “Fast Memoryless, over 64 Bits, Residue to Decimal Converter,” IEEE Trans. Circuits and Systems, vol. 32, pp. 298300, Mar. 1985.
[17] K.M. Ibrahim and S. Saloum, “An Efficient Residue to Binary Converter Design,” IEEE Trans. Circuits and Systems, vol. 35, pp. 11561158, Sept. 1988.
[18] G. Bi and E. Jones, “Fast Conversion between Binary and Residue Numbers,” Electronics Letters, vol. 24, pp. 11951197, Sept. 1988.
[19] A. Dhurkadas, “Comments on 'An Efficient Residue to Binary Converter Design',” IEEE Trans. Circuits and Systems, Part II, vol. 37, pp. 849850, 1990.
[20] K.A. Dhurkadas, “A High Speed Realization of a Residue to Binary Number System Converter,” IEEE Trans. Circuits and Systems II, vol. 45, no. 3, pp. 446447, Mar. 1998.
[21] D. Gallaher, F.E. Petry, and P. Srinivasan, “The Digit Parallel Method for Fast RNS to Weighted Number System Conversion for Specific Moduli $(2^{k}  1, 2^{k}, 2^{k} + 1)$ ,” IEEE Trans. Circuits and Systems, Part II, vol. 44, pp. 5357, Jan. 1997.
[22] R. Conway and J. Nelson, “Fast Converter for 3 Moduli RNS Using New Property of CRT,” IEEE Trans. Computers, vol. 48, no. 8, pp. 852860, Aug. 1999.
[23] Y. Wang, M.N.S. Swamy, and M.O. Ahmad, “Three Number Moduli Sets Based Residue Number Systems,” IEEE Trans. Computers, vol. 46, no. 2, pp. 180183, Feb. 1999.
[24] P.V.A. Mohan, “Comments on 'The Digit Parallel Method for Fast RNS to Weighted Number System Conversion for Specific Moduli $(2^{k}  1, 2^{k}, 2^{k} + 1)$ ',” IEEE Trans. Circuits and Systems, Part II, vol. 47, no. 9, pp. 972974, 2000.
[25] Z. Wang, G.A. Jullien, and W.C. Miller, “An Improved Residue to Binary Converter,” IEEE Trans. Computers, vol. 47, no. 9, pp. 14371440, Sept. 2000.
[26] W. Wang, M. Swamy, M. Ahmad, and Y. Wang, “A HighSpeed ResiduetoBinary Converter for ThreeModuli $(2^{k}, 2^{k} \!\! 1, 2^{k} \!\! 1\!\!1)$ RNS and a Scheme for Its VLSI Implementation,” IEEE Trans. Circuits and Systems, Part II, vol. 47, no. 12, pp. 15761581, Dec. 2000.
[27] W. Wang, M.N.S. Swamy, M.O. Ahmad, and Y. Wang, “A Note on “A HighSpeed ResidueToBinary Converter for ThreeModuli $(2^{k}, 2^{k}  1, 2^{k}  1  1)$ RNS and a Scheme for Its VLSI Implementation”,” IEEE Trans. Circuits and Systems, Part II, vol. 49, Mar. 2002.
[28] Y. Wang, “ResiduetoBinary Converters Based on New Chinese Remainder Theorems,” IEEE Trans. Computers, vol. 49, no. 3, pp.197206, Mar. 2000.
[29] S. Bi, W. Wang, and A. AlKhalili, “New Modulo Decomposed ResiduetoBinary Algorithm for General Moduli Sets,” Proc. IEEE Int'l Conf. Acoustics, Speech and Signal Processing (ICASSP '04), vol. 5, pp. 141144, 2004.
[30] B. Vinnakota and V.V. Rao, “Fast Conversion Techniques for BinaryResidue Number Systems,” IEEE Trans. Computers, vol. 41, no. 12, pp. 927929, Dec. 1994.
[31] S.J. Piestrak, “A HighSpeed Realization of a Residue to Binary Number System Converter,” IEEE Trans. Computers, vol. 44, no. 10, pp. 661663, Oct. 1995.
[32] L. Kalampoukas, D. Nikolos, C. Efstathiou, H.T. Vergos, and J. Kalamatianos, “HighSpeed ParallelPrefix Modulo $2^{n}  1$ Adders,” IEEE Trans. Computers, vol. 49, no. 7, pp. 673680, July 2000.
[33] S. Bi, “Low Power Modulo Reduction Technique and Its Application in ResiduetoBinary Converters,” MEng thesis, Concordia Univ., Montreal, Mar. 2004.
[34] Y. Wang, X. Song, M. Aboulhamid, and H. Shen, “Adder Based Residue to Binary Number Converters for $\{2^{n}  1, 2^{n}, 2^{n} + 1\}$ ,” IEEE Trans. Computers, vol. 50, no. 7, pp. 17721779, July 2002.