
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Vassil S. Dimitrov, Kimmo U. Järvinen, Micheal J. Jacobson Jr., Wai Fong (Andy) Chan, Zhun Huang, "Provably Sublinear Point Multiplication on Koblitz Curves and Its Hardware Implementation," IEEE Transactions on Computers, vol. 57, no. 11, pp. 14691481, November, 2008.  
BibTex  x  
@article{ 10.1109/TC.2008.65, author = {Vassil S. Dimitrov and Kimmo U. Järvinen and Micheal J. Jacobson Jr. and Wai Fong (Andy) Chan and Zhun Huang}, title = {Provably Sublinear Point Multiplication on Koblitz Curves and Its Hardware Implementation}, journal ={IEEE Transactions on Computers}, volume = {57}, number = {11}, issn = {00189340}, year = {2008}, pages = {14691481}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2008.65}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Provably Sublinear Point Multiplication on Koblitz Curves and Its Hardware Implementation IS  11 SN  00189340 SP1469 EP1481 EPD  14691481 A1  Vassil S. Dimitrov, A1  Kimmo U. Järvinen, A1  Micheal J. Jacobson Jr., A1  Wai Fong (Andy) Chan, A1  Zhun Huang, PY  2008 KW  Elliptic curve cryptography KW  Fieldprogrammable gate arrays KW  Koblitz curves KW  multiplebase expansions KW  parallel processing KW  sublinearity VL  57 JA  IEEE Transactions on Computers ER   
[1] N. Koblitz, “Elliptic Curve Cryptosystems,” Math. Computation, vol. 48, pp. 203209, 1987.
[2] V. Miller, “Use of Elliptic Curves in Cryptography,” Advances in Cryptology—CRYPTO '85, pp. 417426, 1986.
[3] N. Koblitz, “CMCurves with Good Cryptographic Properties,” Advances in Cryptology—CRYPTO '91, pp.279287, 1992.
[4] Digital Signature Standard (DSS), Fed. Information Processing Standard, FIPS PUB 1862, Nat'l Inst. of Standards and Technology (NIST) Computer Security FIPS PUB 1862, Jan. 2000.
[5] J. Solinas, “Efficient Arithmetic on Koblitz Curves,” Designs, Codes and Cryptography, vol. 19, pp. 195249, 2000.
[6] R. Avanzi, C. Heuberger, and H. Prodinger, “Minimality of the Hamming Weight of the $\tau\hbox{}{\rm NAF}$ for Koblitz Curves and Improved Combination with Point Halving,” Selected Areas in Cryptography— SAC '05, pp. 332344, 2005.
[7] V. Dimitrov, G. Jullien, and W. Miller, “An Algorithm for Modular Exponentiation,” Information Processing Letters, vol. 66, no. 3, pp.155159, 1998.
[8] M. Ciet and F. Sica, “An Analysis of Double Base Number Systems and a Sublinear Scalar Multiplication Algorithm,” Progress in Cryptology—Mycrypt '05, pp.171182, 2005.
[9] V. Dimitrov, L. Imbert, and P. Mishra, “Efficient and Secure Elliptic Curve Point Multiplication Using DoubleBase Chains,” Advances in Cryptology—ASIACRYPT '05, pp.5978, 2005.
[10] V.S. Dimitrov, K.U. Järvinen, M.J. Jacobson Jr., W.F. Chan, and Z. Huang, “FPGA Implementation of Point Multiplication on Koblitz Curves Using Kleinian Integers,” Cryptographic Hardware and Embedded Systems—CHES '06, pp. 445459, 2006.
[11] R. Avanzi and F. Sica, “Scalar Multiplication on Koblitz Curves Using Double Bases,” Progress in Cryptology—VIETCRYPT '06, pp.131146, 2006.
[12] F. Sica, Scalar Multiplication on Koblitz Curves Using Double Bases. Univ. of Calgary, invited talk, Apr. 2006.
[13] J. Conway and D. Smith, On Quaternions and Octonions. AK Peters, 2003.
[14] R. Tijdeman, “On Integers with Many Small Prime Factors,” Composition Math., vol. 26, no. 3, pp. 319330, 1973.
[15] A. Baker, “Linear Forms in the Logarithms of Algebraic NumbersIV,” Math., vol. 15, pp. 204216, 1968.
[16] M. Mignotte and M. Waldshmidt, “Linear Forms in Two Logarithms and Schneider's Method III,” Annales de la Faculté des Sciences de Toulouse, pp. 4375, 1990.
[17] R. Tijdeman, personal communication, 2006.
[18] J. López and R. Dahab, “Improved Algorithms for Elliptic Curve Arithmetic in $GF(2^{n})$ ,” Selected Areas in Cryptography—SAC '98, pp. 201212, 1998.
[19] C. Doche and T. Lange, “Arithmetic of Elliptic Curves,” Handbook of Elliptic and Hyperelliptic Curve Cryptography, Chapman and Hall/CRC, H. Cohen and G.Frey, eds., chapter 13, pp. 267302, 2006.
[20] A. Higuchi and N. Takagi, “A Fast Addition Algorithm for Elliptic Curve Arithmetic in $GF(2^{n})$ Using Projective Coordinates,” Information Processing Letters, vol. 76, no. 3, pp. 101103, 2000.
[21] E. AlDaoud, R. Mahmod, M. Rushdan, and A. Kilicman, “A New Addition Formula for Elliptic Curves over $GF(2^{n})$ ,” IEEE Trans. Computers, vol. 51, no. 8, pp. 972975, Aug. 2002.
[22] T. Itoh and S. Tsujii, “A Fast Algorithm for Computing Multiplicative Inverses in $GF(2^{m})$ Using Normal Bases,” Information and Computation, vol. 78, no. 3, pp. 171177, Sept. 1988.
[23] Stratix II Device Handbook, Altera, http://www.altera.com/literature/hb/stx2 stratix2_handbook.pdf, May 2007.
[24] Stratix II EP2S180 DSP Development Board—Reference Manual, Altera, http://www.altera.com/literature/manualmnl_SII_ DSP_RM_11Aug06.pdf , Aug. 2006.
[25] C. Wang, T. Troung, H. Shao, L. Deutsch, J. Omura, and I. Reed, “VLSI Architectures for Computing Multiplications and Inverses in $GF(2^{m})$ ,” IEEE Trans. Computers, vol. 34, no. 8, pp. 709717, Aug. 1985.
[26] B. Ansari and M.A. Hasan, “High Performance Architecture of Elliptic Curve Scalar Multiplication,” Technical Report CACR 20061, Univ. of Waterloo, 2006.
[27] S. Bajracharya, C. Shu, K. Gaj, and T. ElGhazawi, “Implementation of Elliptic Curve Cryptosystems over $GF(2^{n})$ in Optimal Normal Basis on a Reconfigurable Computer,” Proc. Int'l Conf. Field Programmable Logic and Application (FPL '04), pp.10981100, 2004.
[28] M. Bednara, M. Daldrup, J. von zur Gathen, J. Shokrollahi, and J. Teich, “Reconfigurable Implementation of Elliptic Curve Crypto Algorithms,” Proc. Reconfigurable Architectures Workshop, Int'l Parallel and Distributed Processing Symp. (IPDPS '02), pp.157164, Apr. 2002.
[29] M. Benaissa and W. Lim, “Design of Flexible $GF(2^{m})$ Elliptic Curve Cryptography Processors,” IEEE Trans. Very Large Scale Integration Systems, vol. 14, no. 6, pp. 659662, June 2006.
[30] R. Cheung, N. Telle, W. Luk, and P. Cheung, “Customizable Elliptic Curve Cryptosystem,” IEEE Trans. Very Large Scale Integration Systems, vol. 13, pp. 10481059, Sept. 2005.
[31] H. Eberle, N. Gura, S. Shantz, and V. Gupta, “A Cryptographic Processor for Arbitrary Elliptic Curves over $GF(2^{m})$ ,” Technical Report SMLI TR2003123, Sun Microsystems, May 2003.
[32] K. Järvinen, J. Forsten, and J. Skyttä, “FPGA Design of SelfCertified Signature Verification on Koblitz Curves,” Cryptographic Hardware and Embedded Systems—CHES '07, pp. 256271, 2007.
[33] P. Leong and K. Leung, “A Microcoded Elliptic Curve Processor Using FPGA Technology,” IEEE Trans. Very Large Scale Integration Systems, vol. 10, no. 5, pp. 550559, Oct. 2002.
[34] J. Lutz and A. Hasan, “High Performance FPGA Based Elliptic Curve Cryptographic CoProcessor,” Proc. Int'l Conf. Information Technology: Coding and Computing (ITCC '04), vol. 2, pp. 486492, Apr. 2004.
[35] S. Okada, N. Torii, K. Itoh, and M. Takenaka, “Implementation of Elliptic Curve Cryptographic Coprocessor over $GF(2^{m})$ on an FPGA,” Cryptographic Hardware and Embedded Systems—CHES '00, pp. 2540, 2000.
[36] G. Orlando and C. Paar, “A HighPerformance Reconfigurable Elliptic Curve Processor for $GF(2^{m})$ ,” Cryptographic Hardware and Embedded Systems—CHES '00, pp. 4156, 2000.
[37] F. RodríguezHenríquez, N. Saqib, and A. DíazPérez, “A Fast Parallel Implementation of Elliptic Curve Point Multiplication over $GF(2^{m})$ ,” Microprocessors and Microsystems, vol. 28, nos. 56, pp. 329339, Aug. 2004.
[38] C. Shu, K. Gaj, and T. ElGhazawi, “Low Latency Elliptic Curve Cryptography Accelerators for NIST Curves over Binary Fields,” Proc. IEEE Int'l Conf. FieldProgrammable Technology (FPT '05), pp.309310, Dec. 2005.