
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
JeanLuc Beuchat, Nicolas Brisebarre, Jérémie Detrey, Eiji Okamoto, Masaaki Shirase, Tsuyoshi Takagi, "Algorithms and Arithmetic Operators for Computing the ηT Pairing in Characteristic Three," IEEE Transactions on Computers, vol. 57, no. 11, pp. 14541468, November, 2008.  
BibTex  x  
@article{ 10.1109/TC.2008.103, author = {JeanLuc Beuchat and Nicolas Brisebarre and Jérémie Detrey and Eiji Okamoto and Masaaki Shirase and Tsuyoshi Takagi}, title = {Algorithms and Arithmetic Operators for Computing the ηT Pairing in Characteristic Three}, journal ={IEEE Transactions on Computers}, volume = {57}, number = {11}, issn = {00189340}, year = {2008}, pages = {14541468}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2008.103}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Algorithms and Arithmetic Operators for Computing the ηT Pairing in Characteristic Three IS  11 SN  00189340 SP1454 EP1468 EPD  14541468 A1  JeanLuc Beuchat, A1  Nicolas Brisebarre, A1  Jérémie Detrey, A1  Eiji Okamoto, A1  Masaaki Shirase, A1  Tsuyoshi Takagi, PY  2008 KW  Eta_T pairing KW  elliptic curve KW  finite field arithmetic KW  hardware accelerator KW  FPGA VL  57 JA  IEEE Transactions on Computers ER   
[1] D. Boneh, B. Lynn, and H. Shacham, “Short Signatures from the Weil Pairing,” Advances in Cryptology—Proc. ASIACRYPT '01, C.Boyd, ed., pp. 514532, 2001.
[2] A. Menezes, T. Okamoto, and S.A. Vanstone, “Reducing Elliptic Curves Logarithms to Logarithms in a Finite Field,” IEEE Trans. Information Theory, vol. 39, no. 5, pp. 16391646, Sept. 1993.
[3] G. Frey and H.G. Rück, “A Remark Concerning $m\hbox{}{\rm Divisibility}$ and the Discrete Logarithm in the Divisor Class Group of Curves,” Math. Computation, vol. 62, no. 206, pp. 865874, Apr. 1994.
[4] S. Mitsunari, R. Sakai, and M. Kasahara, “A New Traitor Tracing,” IEICE Trans. Fundamentals, vol. E85A, no. 2, pp. 481484, Feb. 2002.
[5] R. Sakai, K. Ohgishi, and M. Kasahara, “Cryptosystems Based on Pairing,” Proc. Symp. Cryptography and Information Security (SCIS '00), pp. 2628, Jan. 2000.
[6] A. Joux, “A One Round Protocol for Tripartite DiffieHellman,” Proc. Algorithmic Number Theory—ANTS IV, W. Bosma, ed., pp.385394, 2000.
[7] R. Dutta, R. Barua, and P. Sarkar, PairingBased Cryptographic Protocols: A Survey, cryptology ePrint Archive, Report 2004/64, 2004.
[8] R. Granger, D. Page, and N.P. Smart, “High Security PairingBased Cryptography Revisited,” Proc. Algorithmic Number Theory —ANTS VII, F. Hess, S. Pauli, and M. Pohst, eds., pp. 480494, 2006.
[9] N. Koblitz and A. Menezes, “PairingBased Cryptography at High Security Levels,” Cryptography and Coding, N.P. Smart, ed., pp. 1336, Springer, 2005.
[10] J.H. Silverman, The Arithmetic of Elliptic Curves. SpringerVerlag, 1986.
[11] P.S.L.M. Barreto, H.Y. Kim, B. Lynn, and M. Scott, “Efficient Algorithms for PairingBased Cryptosystems,” Advances in Cryptology—Proc. CRYPTO '02, M. Yung, ed., pp. 354368, 2002.
[12] E.R. Verheul, “Evidence that XTR Is More Secure than Supersingular Elliptic Curve Cryptosystems,” J. Cryptology, vol. 17, no. 4, pp. 277296, 2004.
[13] V.S. Miller, Short Programs for Functions on Curves, http://crypto. stanford.edumiller, 1986.
[14] V.S. Miller, “The Weil Pairing, and Its Efficient Calculation,” J.Cryptology, vol. 17, no. 4, pp. 235261, 2004.
[15] S.D. Galbraith, K. Harrison, and D. Soldera, “Implementing the Tate Pairing,” Algorithmic Number Theory—Proc. ANTS V, C.Fieker and D. Kohel, eds., pp. 324337, 2002.
[16] I. Duursma and H.S. Lee, “Tate Pairing Implementation for Hyperelliptic Curves $y^{2} = x^{p}  x + d$ ,” Advances in Cryptology— Proc. ASIACRYPT '03, C.S. Laih, ed., pp.111123, 2003.
[17] S. Kwon, “Efficient Tate Pairing Computation for Elliptic Curves over Binary Fields,” Information Security and Privacy—Proc. ACISP '05, C. Boyd and J.M. González Nieto, eds., pp.134145, 2005.
[18] P.S.L.M. Barreto, S.D. Galbraith, C. Ó hÉigeartaigh, and M. Scott, “Efficient Pairing Computation on Supersingular Abelian Varieties,” Designs, Codes and Cryptography, vol. 42, no. 3, pp. 239271, Mar. 2007
[19] P. Grabher and D. Page, “Hardware Acceleration of the Tate Pairing in Characteristic Three,” Cryptographic Hardware and Embedded Systems—Proc. CHES '05, J.R. Rao and B.Sunar, eds., pp. 398411, 2005.
[20] T. Kerins, W.P. Marnane, E.M. Popovici, and P. Barreto, “Efficient Hardware for the Tate Pairing Calculation in Characteristic Three,” Cryptographic Hardware and Embedded Systems— Proc. CHES '05, J.R. Rao and B. Sunar, eds., pp. 412426, 2005.
[21] G. Bertoni, L. Breveglieri, P. Fragneto, and G. Pelosi, “Parallel Hardware Architectures for the Cryptographic Tate Pairing,” Proc. Third Int'l Conf. Information Technology: New Generations (ITNG), 2006.
[22] C. Shu, S. Kwon, and K. Gaj, “FPGA Accelerated Tate Pairing Based Cryptosystem over Binary Fields,” Proc. IEEE Int'l Conf. Field Programmable Technology (FPT '06), pp. 173180, 2006.
[23] R. Ronan, C. Murphy, T. Kerins, C. Ó hÉigeartaigh, and P.S.L.M. Barreto, “A Flexible Processor for the Characteristic 3$\eta_{T}$ Pairing,” Int'l J. High Performance Systems Architecture, vol. 1, no. 2, pp. 7988, 2007.
[24] J. Jiang, “Bilinear Pairing ($\eta_{T}$ Pairing) IP Core,” technical report, Dept. of Computer Science, City Univ. of Hong Kong, May 2007.
[25] J.L. Beuchat, M. Shirase, T. Takagi, and E. Okamoto, “An Algorithm for the $\eta_{T}$ Pairing Calculation in Characteristic Three and Its Hardware Implementation,” Proc. 18th IEEE Symp. Computer Arithmetic (ARITH '07), P. Kornerup and J.M. Muller, eds., pp. 97104, 2007.
[26] J.L. Beuchat, N. Brisebarre, M. Shirase, T. Takagi, and E. Okamoto, “A Coprocessor for the Final Exponentiation of the$\eta_{T}$ Pairing in Characteristic Three,” Proc. First Int'l WorkshopArithmetic of Finite Fields (WAIFI '07), C. Carlet and B. Sunar, eds., pp. 2539, 2007.
[27] J.L. Beuchat, N. Brisebarre, J. Detrey, and E. Okamoto, “Arithmetic Operators for PairingBased Cryptography,” Cryptographic Hardware and Embedded Systems—Proc. CHES '07, P.Paillier and I.Verbauwhede, eds., pp. 239255, 2007.
[28] R. Granger, D. Page, and M. Stam, “On Small Characteristic Algebraic Tori in PairingBased Cryptography,” LMS J. Computation and Math., vol. 9, pp. 6485, Mar. 2006.
[29] M. Shirase, T. Takagi, and E. Okamoto, “Some Efficient Algorithms for the Final Exponentiation of $\eta_{T}$ Pairing,” Proc. Third Int'l Information Security Practice and Experience Conf. (ISPEC'07), E. Dawson and D.S. Wong, eds., pp.254268, May 2007.
[30] J.L. Beuchat, T. Miyoshi, J.M. Muller, and E. Okamoto, “Horner's RuleBased Multiplication over ${\rm GF}(p)$ and ${\rm GF}(p^{n})$ : A Survey,” Int'l J. Electronics, to appear.
[31] S.E. Erdem, T. Yamk, and Ç.K. Koç, “Polynomial Basis Multiplication over ${\rm GF}(2^{m})$ ,” Acta Applicandae Math., vol. 93, nos. 13, pp.3355, Sept. 2006.
[32] J. Guajardo, T. Güneysu, S. Kumar, C. Paar, and J. Pelzl, “Efficient Hardware Implementation of Finite Fields with Applications to Cryptography,” Acta Applicandae Math., vol. 93, nos. 13, pp. 75118, Sept. 2006.
[33] L. Song and K.K. Parhi, “Low Energy DigitSerial/Parallel Finite Field Multipliers,” J. VLSI Signal Processing, vol. 19, no. 2, pp. 149166, July 1998.
[34] R. Ronan, C. Ó hÉigeartaigh, C. Murphy, M. Scott, T. Kerins, and W. Marnane, “An Embedded Processor for a PairingBased Cryptosystem,” Proc. Third Int'l Conf. Information Technology: New Generations (ITNG), 2006.
[35] G. Meurice de Dormale, personal communication.
[36] J.C. Bajard, J. Duprat, S. Kla, and J.M. Muller, “Some Operators for OnLine Radix2 Computations,” J. Parallel and Distributed Computing, vol. 22, pp. 336345, 1994.
[37] T. Itoh and S. Tsujii, “A Fast Algorithm for Computing Multiplicative Inverses in ${\rm GF}(2^{m})$ Using Normal Bases,” Information and Computation, vol. 78, pp. 171177, 1988.
[38] J. von zur Gathen and M. Nöcker, “Computing Special Powers in Finite Fields,” Math. Computation, vol. 73, no. 247, pp. 14991523, 2003.
[39] F. RodríguezHenríquez, G. MoralesLuna, N.A. Saqib, and N. CruzCortés, “A Parallel Version of the ItohTsujii Multiplicative Inversion Algorithm,” Reconfigurable Computing: Architectures, Tools and Applications—Proc. ARC '07, P.C. Diniz, E. Marques, K. Bertels, M.M. Fernandes, and J.M.P. Cardoso, eds., pp.226237, 2007.
[40] D.E. Knuth, The Art of Computer Programming, third ed. AddisonWesley, 1998.
[41] P.S.L.M. Barreto, A Note on Efficient Computation of Cube Roots in Characteristic 3, 2004 cryptology ePrint Archive, Report 2004/305.
[42] A. Vithanage, personal communication.
[43] T. Kerins, E. Popovici, and W. Marnane, “Algorithms and Architectures for Use in FPGA Implementations of Identity Based Encryption Schemes,” FieldProgrammable Logic and Applications, J.Becker, M. Platzner, and S. Vernalde, eds., pp. 7483, Springer, 2004.
[44] E. Gorla, C. Puttmann, and J. Shokrollahi, “Explicit Formulas for Efficient Multiplication in ${\hbox{\rlap{I}\kern 2.0pt{\hbox{F}}}}_{3^{6m}}$ ,” Selected Areas in Cryptography— Proc. SAC '07, C. Adams, A. Miri, and M. Wiener, eds., pp. 173183, 2007.
[45] F. Hess, N. Smart, and F. Vercauteren, “The Eta Pairing Revisited,” IEEE Trans. Information Theory, vol. 52, no. 10, pp.45954602, Oct. 2006.