
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Bijan Ansari, M. Anwar Hasan, "HighPerformance Architecture of Elliptic Curve Scalar Multiplication," IEEE Transactions on Computers, vol. 57, no. 11, pp. 14431453, November, 2008.  
BibTex  x  
@article{ 10.1109/TC.2008.133, author = {Bijan Ansari and M. Anwar Hasan}, title = {HighPerformance Architecture of Elliptic Curve Scalar Multiplication}, journal ={IEEE Transactions on Computers}, volume = {57}, number = {11}, issn = {00189340}, year = {2008}, pages = {14431453}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2008.133}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  HighPerformance Architecture of Elliptic Curve Scalar Multiplication IS  11 SN  00189340 SP1443 EP1453 EPD  14431453 A1  Bijan Ansari, A1  M. Anwar Hasan, PY  2008 KW  Elliptic curves KW  finite fields KW  scalar multiplication VL  57 JA  IEEE Transactions on Computers ER   
[1] P.K. Mishra, “Pipelined Computation of Scalar Multiplication in Elliptic Curve Cryptosystems,” IEEE Trans. Computers, vol. 55, no. 8, pp. 10001010, Aug. 2006.
[2] A.K. Daneshbeh and M.A. Hasan, “Area Efficient High Speed Elliptic Curve Cryptoprocessor for Random Curves,” Proc. Int'l Conf. Information Technology: Coding and Computing (ITCC '04), vol. 2, pp. 588593, 2004.
[3] N. Gura, S.C. Shantz, H. Eberle, S. Gupta, V. Gupta, D. Finchelstein, E. Goupy, and D. Stebila, “An EndtoEnd Systems Approach to Elliptic Curve Cryptography,” Proc. Fourth Int'l Workshop Cryptographic Hardware and Embedded Systems (CHES '02), B.S. Kaliski, Ç.K. Koç, and C. Paar, eds., pp. 349365, 2002.
[4] T. Izu and T. Takagi, “Fast Elliptic Curve Multiplications with SIMD Operations,” Proc. Fourth Int'l Conf. Information and Comm. Security (ICICS '02), R.H. Deng, S. Qing, F. Bao, and J. Zhou, eds., pp. 217230, 2002.
[5] R.C. Cheung, N.J. Telle, W. Luk, and P.Y. Vjeung, “Customizable Elliptic Curve Cryptosystems,” IEEE Trans. VLSI Systems, vol. 13, no. 9, pp. 10481059, 2005.
[6] B. ChevallierMames, M. Ciet, and M. Joye, “LowCost Solutions for Preventing Simple SideChannel Analysis: SideChannel Atomicity,” IEEE Trans. Computers, vol. 53, no. 6, pp. 760768, June 2004.
[7] K. Sakiyama, L. Batina, B. Preneel, and I. Verbauwhede, “Superscalar Coprocessor for HighSpeed CurveBased Cryptography,” Proc. Eighth Int'l Workshop Cryptographic Hardware and Embedded Systems (CHES '06), L. Goubin and M. Matsui, eds., pp. 415429, 2006.
[8] H. Wu, “BitParallel Finite Field Multiplier and Squarer Using Polynomial Basis,” IEEE Trans. Computers, vol. 51, no. 7, pp.750758, July 2002.
[9] J. Lutz and M.A. Hasan, “High Performance FPGA Based Elliptic Curve Cryptographic CoProcessor,” Proc. Int'l Conf. Information Technology: Coding and Computing (ITCC '04), vol. 2, pp. 486492, 2004.
[10] G. Orlando and C. Paar, “A High Performance Reconfigurable Elliptic Curve Processor for ${\rm GF}(2^{m})$ ,” Proc. Second Int'l Workshop Cryptographic Hardware and Embedded Systems (CHES '00), Ç.K. Koç and C. Paar, eds., pp. 4156, 2000.
[11] C. Grabbe, M. Bednara, J. von zur Gathen, J. Shokrollahi, and J. Teich, “A High Performance VLIW Processor for Finite Field Arithmetic,” Proc. 17th Int'l Parallel and Distributed Processing Symp. (IPDPS '03), pp. 189194, 2003.
[12] M. Ernst, M. Jung, F. Madlener, S. Huss, and R. Blümel, “A Reconfigurable System on Chip Implementation for Elliptic Curve Cryptography over ${\rm GF}(2^{n})$ ,” Proc. Fourth Int'l Workshop Cryptographic Hardware and Embedded Systems (CHES '02), B.S. Kaliski, Ç.K. Koç, and C. Paar, eds., pp. 381399, 2002.
[13] C. Huang, J. Lai, J. Ren, and Q. Zhang, “Scalable Elliptic Curve Encryption Processor for Portable Application,” Proc. Fifth Int'l Conf. ASIC, vol. 2, pp. 13121316, Oct. 2003.
[14] K.H. Leung, K.W. Ma, W.K. Wong, and P.H.W. Leong, “FPGA Implementation of a Microcoded Elliptic Curve Cryptographic Processor,” Proc. Eighth IEEE Symp. FieldProgrammable Custom Computing Machines (FCCM '00), pp. 6876, 2000.
[15] M. Bednara, M. Daldrup, J. von zur Gathen, J. Shokrollahi, and J. Teich, “Reconfigurable Implementation of Elliptic Curve Crypto Algorithms,” Proc. 16th Int'l Parallel and Distributed Processing Symp. (IPDPS), 2002.
[16] D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curves Cryptography. Springer, 2003.
[17] I. Blake, G. Seroussi, and N. Smart, Elliptic Curves in Cryptography. Cambridge Univ. Press, 2002.
[18] T. Itoh and S. Tsujii, “A Fast Algorithm for Computing Multiplicative Inverses in ${\rm GF}(2^{m})$ Using Normal Bases,” Information and Computation, vol. 78, no. 3, pp. 171177, 1988.
[19] J. López and R. Dahab, “Fast Multiplication on Elliptic Curves over ${\rm GF}(2^{m})$ without Precomputation,” Proc. First Int'l Workshop Cryptographic Hardware and Embedded Systems (CHES '99), Ç.K. Koç and C. Paar, eds., pp. 316327, 1999.
[20] A. Satoh and K. Takano, “A Scalable DualField Elliptic Curve Cryptographic Processor,” IEEE Trans. Computers, vol. 52, no. 4, pp. 449460, Apr. 2003.
[21] B. Ansari and M.A. Hasan, “High Performance Architecture of Elliptic Curve Scalar Multiplication,” technical report, Univ. of Waterloo, http://www.cacr.math.uwaterloo.ca/techreports/ 2006cacr200601.pdf, Jan. 2006.
[22] P.L. Montgomery, “Speeding the Pollard and Elliptic Curve Methods of Factorization,” Math. of Computation, vol. 48, pp. 243264, 1987.
[23] D. Catalano, R. Cramer, I. Damgard, G.D. Crescenzo, D. Pointcheval, and T. Takagi, Contemporary Cryptology. Birkhäuser Basel, 2005.
[24] P.L. Montgomery, “Five, Six, and SevenTerm KaratsubaLike Formulae,” IEEE Trans. Computers, vol. 54, no. 3, pp. 362369, Mar. 2005.
[25] A. Weimerskirch and C. Paar, Generalizations of the Karatsuba Algorithm for Efficient Implementations, Cryptology ePrint Archive, Report 2006/224, http:/eprint.iacr.org/, 2006.