The Community for Technology Leaders
RSS Icon
Issue No.09 - September (2008 vol.57)
pp: 1196-1201
Nicola E. L'Insalata , University of Pisa, Pisa
Esa Petri , University of Pisa, Pisa
Sergio Saponara , University of Pisa, Pisa
Luca Fanucci , University of Pisa, Pisa
Michele Casula , University of Pisa, Pisa
Riccardo Locatelli , STMicroelectronics, Grenoble
Marcello Coppola , STMicroelectronics, Grenoble
Clock distribution is an important issue when designing Multi Processor Systems-on-Chip on deep sub-micron technology nodes and non-synchronous approaches are becoming popular in this field. This work presents a low-complexity link microarchitecture for mesochronous on-chip communication that enables skew constraint looseness in the clock tree synthesis, frequency speed-up, power consumption reduction and faster back-end turnarounds. With respect to the state of the art, the proposed link architecture stands for its low power and low complexity overheads; moreover it can be easily integrated in a conventional digital design flow since it is implemented by means of standard cells only. Results are presented referring to the link integrated within a Multi Processor tiled architecture based on a Network-on-Chip communication backbone on a CMOS 65 nm technology
On-chip interconnection networks, Asynchronous/synchronous operation, Register-Transfer-Level Implementation, Multiprocessor Systems, Standard cells, VLSI Systems, Low-power design, VLSI, Architecture
Nicola E. L'Insalata, Esa Petri, Sergio Saponara, Luca Fanucci, Michele Casula, Riccardo Locatelli, Marcello Coppola, "Low-Complexity Link Microarchitecture for Mesochronous Communication in Networks-on-Chip", IEEE Transactions on Computers, vol.57, no. 9, pp. 1196-1201, September 2008, doi:10.1109/TC.2008.48
[1] L. Benini and G. De Micheli, “Networks on Chip: A New SoC Paradigm,” Computer, vol. 35, no. 1, pp. 70-78, Jan. 2002.
[2] R. Saleh, S. Wilton, S. Mirabbasi, A. Hu, M. Greenstreet, G. Lemieux, P. Pande, C. Grecu, and A. Ivanov, “System-on-Chip: Reuse and Integration,” Proc. IEEE, vol. 94, no. 6, pp. 1050-1069, June 2006.
[3] R. Ho, K.W. Mai, and M.A. Horowitz, “The Future of Wires,” Proc. IEEE, vol. 89, no. 4, pp. 490-504, Apr. 2001.
[4] J. Muttersbach, T. Villiger, and W. Fichner, “Practical Design of Globally Asynchronous Locally Synchronous Systems,” Proc. Sixth Int'l Symp. Advanced Research in Asynchronous Circuits and Systems, pp. 52-59, 2000.
[5] A. Martin and M. Nystrom, “Asynchronous Techniques for System-on-Chip Design,” Proc. IEEE, vol. 94, no. 6, pp. 1089-1120, June 2006.
[6] R. Marculescu, D. Marculescu, and L. Pileggi, “Toward an Integrated Design Methodology for Fault-Tolerant Multiple Clock/Voltage Integrated Systems,” Proc. 22nd IEEE Int'l Conf. Computer Design, 2004.
[7] J. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated Circuits: A Design Perspective, second ed. Prentice Hall, 2003.
[8] D. Wiklund, “Mesochronous Clocking and Communication in On-Chip Networks,” Proc. Swedish System-on-Chip Conf., Apr. 2003.
[9] A. Edman and C. Svensson, “Timing Closure through Globally Synchronous, Timing-Portioned Design Methodology,” Proc. 45th Design Automation Conf., pp. 71-74, 2004.
[10] W.J. Dally and J.W. Poulton, Digital Systems Engineering. Cambridge Univ. Press, 1998.
[11] P. Caputa and C. Svensson, “An On-Chip Delay- and Skew-Insensitive Multicycle Communication Scheme,” Proc. IEEE Int'l Conf. Solid-State Circuits, pp. 1765-1774, Feb. 2006.
[12] Y. Semiat and R. Ginosaur, “Timing Measurements of Synchronization Circuits,” Proc. Ninth Int'l Symp. Advanced Research in Asynchronous Circuits and Systems, pp. 68-77, May 2003.
[13] S. Kim and R. Sridhar, “Self-Timed Mesochronous Interconnection for High-Speed VLSI Systems,” Proc. Sixth Great Lakes Symp. VLSI, pp. 122-125, 1996.
[14] B. Mesgarzadeh, C. Svensson, and A. Alvandpour, “A New Mesochronous Clocking Scheme for Synchronization in SoC,” Proc. IEEE Int'l Symp. Circuits and Systems, pp. 605-608, 2004.
[15] F. Mu and C. Svensson, “Self-Tested Self-Synchronization Circuit for Mesochronous Clocking,” IEEE Trans. Circuits Systems II, vol. 48, no. 2, pp.129-140, Feb. 2001.
[16] S.B. Tatapudi and J.G. Delgado-Frias, “A Mesochronous Pipelining Scheme for High-Performance Digital Systems,” IEEE Trans. Circuits Systems I, vol. 53, no. 5, pp. 1078-1088, May 2006.
[17] L.P. Carloni and A.L. Sangiovanni-Vincentelli, “Coping with Latency in Soc Design,” IEEE Micro, vol. 22, no. 5, p. 12, Sept./Oct. 2002.
[18] M. Singh and M. Theobald, “Generalized Latency-Insensitive Systems for Single-Clock and Multi-Clock Architectures,” Proc. Int'l Conf. Design, Automation and Test in Europe, 2004.
[19] R. Locatelli, M. Coppola, D. Mangano, L. Fanucci, F. Vitullo, D. Zandri, and N.E. L'Insalata, “Synchronization System for Synchronizing Modules in an Integrated Circuit,” EU Patent Application 06291440.3-1237, Nov. 2006.
[20] P.S. Paolucci, A. Jerraya, R. Leupers, L. Thiele, and P. Vicini, “SHAPES: A Tiled Scalable Software Hardware Architecture Platform for Embedded Systems,” Proc. Fourth Int'l Conf. Hardware/Software Codesign and System Synthesis, pp. 167-172, 2006.
[21] P.S. Paolucci, F. Lo Cicero, A. Lonardo, M. Perra, D. Rossetti, C. Sidore, P. Vicini, M. Coppola, L. Raffo, G. Mereu, F. Palumbo, L. Fanucci, S. Saponara, and F. Vitullo, “Introduction to the Tiled HW Architecture of SHAPES,” Proc. Int'l Conf. Design, Automation and Test in Europe, vol. 1, pp.77-82, Apr. 2007.
[22] U.Y. Ogras, J. Hu, and R. Marculescu, “Communication-Centric SoC Design for Nanoscale Domain,” Proc. 16th IEEE Int'l Conf. Application-Specific Systems, Architecture, and Processors, Apr. 2007.
[23] M. Coppola, R. Locatelli, G. Maruccia, L. Pieralisi, and A. Scandurra, “Spidergon: A Novel On-Chip Communication Network,” Proc. Int'l Symp. System-on-Chip, pp. 15-16, Nov. 2004.
[24] L. Bononi and N. Concer, “Simulation and Analysis of Network on Chip Architectures: Ring, Spidergon and 2D Mesh,” Proc. Int'l Conf. Design, Automation and Test in Europe, pp. 154-159, 2006.
19 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool