
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Ariane M. Masuda, Lucia Moura, Daniel Panario, David Thomson, "Low Complexity Normal Elements over Finite Fields of Characteristic Two," IEEE Transactions on Computers, vol. 57, no. 7, pp. 9901001, July, 2008.  
BibTex  x  
@article{ 10.1109/TC.2007.70845, author = {Ariane M. Masuda and Lucia Moura and Daniel Panario and David Thomson}, title = {Low Complexity Normal Elements over Finite Fields of Characteristic Two}, journal ={IEEE Transactions on Computers}, volume = {57}, number = {7}, issn = {00189340}, year = {2008}, pages = {9901001}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2007.70845}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Low Complexity Normal Elements over Finite Fields of Characteristic Two IS  7 SN  00189340 SP990 EP1001 EPD  9901001 A1  Ariane M. Masuda, A1  Lucia Moura, A1  Daniel Panario, A1  David Thomson, PY  2008 KW  Computations in finite fields KW  Computations on polynomials VL  57 JA  IEEE Transactions on Computers ER   
[1] D.W. Ash, I.F. Blake, and S.A. Vanstone, “Low Complexity Normal Bases,” Discrete Applied Math., vol. 25, pp. 191210, 1989.
[2] T. Beth, W. Geiselmann, and F. Meyer, “Finding (Good) Normal Bases in Finite Fields,” Proc. Int'l Conf. Symbolic and Algebraic Computation, pp. 173178, 1991.
[3] I.F. Blake, S. Gao, and R.C. Mullin, “Explicit Factorization of $x^{2^{k}} +1$ over ${\hbox{\rlap{I}\kern 2.0pt{\hbox{F}}}}_{p}$ with Prime $p \equiv 3 \bmod 4$ ,” Applicable Algebra in Eng., Comm., and Computing, vol. 4, pp. 8994, 1993.
[4] M. Christopoulou, T. Garefalakis, D. Panario, and D. Thomson, “The Trace of an Optimal Normal Element and Low Complexity Normal Bases,” Designs, Codes and Cryptography, to appear, 2008.
[5] “Handbook of Elliptic and Hyperelliptic Curve Cryptography,” Discrete Math. and Its Applications, H. Cohen, G. Frey, R.M. Avanzi, C.Douche, T. Lange, K. Nguyen, and F. Vercauteren, eds., Chapman and Hall/CRC, 2006.
[6] G.S. Frandsen, “On the Density of Normal Bases in Finite Fields,” Finite Fields and Their Applications, vol. 6, pp. 2338, 2000.
[7] S. Gao, J. von zur Gathen, D. Panario, and V. Shoup, “Algorithms for Exponentiation in Finite Fields,” J. Symbolic Computation, vol. 29, pp. 879889, 2000.
[8] S. Gao and H.W. Lenstra, “Optimal Normal Bases,” Designs, Codes, and Cryptography, vol. 2, pp. 315323, 1992.
[9] S. Gao and D. Panario, “Density of Normal Elements,” Finite Fields and Their Applications, vol. 3, pp. 141150, 1997.
[10] J. von zur Gathen and J. Gerhard, Modern Computer Algebra, second ed. Cambridge Univ. Press, 2003.
[11] J. von zur Gathen and J. Gerhard, “Polynomial Factorization over ${\hbox{\rlap{I}\kern 2.0pt{\hbox{F}}}}_{2}$ ,” Math. of Computation, vol. 71, pp. 16771698, 2002.
[12] J. von zur Gathen and M. Giesbrecht, “Constructing Normal Bases in Finite Fields,” J. Symbolic Computation, vol. 10, pp. 547570, 1990.
[13] W. Geiselmann, “Algebraische Algorithmenentwicklung am Beispiel der Arithmetik in endlichen Körpern,” dissertation, Universität Karlsruhe, Germany, 1992.
[14] K. Hensel, “Über die Darstellung der Zahlen eines Gattungsbereiches für einen beliebigen Primdivisor,” J. für die reine und angewandte Mathematik, vol. 103, pp. 230237, 1888.
[15] D. Jungnickel, Finite Fields: Structure and Arithmetics. B.I. Wissenschaftsverlag, 1993.
[16] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications, second ed. Cambridge Univ. Press, 1994.
[17] F. Meyer, “Normalbasismultiplikation in endlichen Körpern; Diplomarbeit,” Univ. of Karlsruhe, Germany, 1990.
[18] R.C. Mullin, I.M. Onyszchuk, S.A. Vanstone, and R.M. Wilson, “Optimal Normal Bases in $GF(p^{n})$ ,” Discrete Applied Math., vol. 22, pp. 149161, 1988/1989.
[19] M. Mendez and A. Pala, “Type I Error Rate and Power of Three Normality Tests,” Pakistan J. Information and Technology, vol. 2, pp.135139, 2003.
[20] P. Ning and Y. Yin, “Efficient Software Implementation for Finite Field Multiplication in Normal Basis,” Lecture Notes in Computer Science, vol. 2229, pp. 177188, 2001.
[21] C. Savage, “A Survey of Combinatorial Gray Codes,” SIAM Rev., vol. 39, pp. 605629, 1997.
[22] V. Shoup, Number Theory Library (NTL) Version 5.4, http:/www.shoup.net, 2006.
[23] D. Stinson, “Some Observations on Parallel Algorithms for Fast Exponentiation in ${\hbox{\rlap{I}\kern 2.0pt{\hbox{F}}}}_{2^{n}}$ ,” SIAM J. Computing, vol. 19, pp. 711717, 1990.
[24] C.C. Wang, “An Algorithm to Design Finite Field Multipliers Using a SelfDual Normal Basis,” IEEE Trans. Computers, vol. 38, pp. 14571460, 1989.
[25] Z.X. Wan and K. Zhou, “On the Complexity of the Dual Basis of a Type I Optimal Normal Basis,” Finite Fields and Their Applications, vol. 13, pp. 411417, 2007.
[26] B. Young and D. Panario, “Low Complexity Normal Bases in ${\hbox{\rlap{I}\kern 2.0pt{\hbox{F}}}}_{2^{n}}$ ,” Finite Fields and Their Applications, vol. 10, pp. 5364, 2004.