
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
DongU Lee, Ray Cheung, Wayne Luk, John Villasenor, "Hardware Implementation TradeOffs of Polynomial Approximations and Interpolations," IEEE Transactions on Computers, vol. 57, no. 5, pp. 686701, May, 2008.  
BibTex  x  
@article{ 10.1109/TC.2007.70847, author = {DongU Lee and Ray Cheung and Wayne Luk and John Villasenor}, title = {Hardware Implementation TradeOffs of Polynomial Approximations and Interpolations}, journal ={IEEE Transactions on Computers}, volume = {57}, number = {5}, issn = {00189340}, year = {2008}, pages = {686701}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2007.70847}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Hardware Implementation TradeOffs of Polynomial Approximations and Interpolations IS  5 SN  00189340 SP686 EP701 EPD  686701 A1  DongU Lee, A1  Ray Cheung, A1  Wayne Luk, A1  John Villasenor, PY  2008 KW  Algorithms implemented in hardware KW  Approximation KW  Interpolation KW  VLSI Systems VL  57 JA  IEEE Transactions on Computers ER   
[1] Y. Song and B. Kim, “Quadrature Direct Digital Frequency Synthesizers Using InterpolationBased Angle Rotation,” IEEE Trans. VLSI Systems, vol. 12, no. 7, pp. 701710, 2004.
[2] H. Shin, J. Lee, and J. Kim, “A Hardware Cost Minimized Fast Phong Shader,” IEEE Trans. VLSI Systems, vol. 9, no. 2, pp. 297304, 2001.
[3] K. Karagianni, V. Paliouras, G. Diamantakos, and T. Stouraitis, “OperationSaving VLSI Architectures for 3D Geometrical Transformations,” IEEE Trans. Computers, vol. 50, no. 6, pp. 609622, June 2001.
[4] P. Liu and S. Bhatt, “Experiences with Parallel NBody Simulation,” IEEE Trans. Parallel and Distributed Systems, vol. 11, no. 12, pp. 13061323, Dec. 2000.
[5] Y. Hu, “CORDICBased VLSI Architectures for Digital Signal Processing,” IEEE Signal Processing Magazine, vol. 9, no. 3, pp. 1734, 1992.
[6] K. Johansson, O. Gustafsson, and L. Wanhammar, “Approximation of Elementary Functions Using a Weighted Sum of BitProducts,” Proc. IEEE Int'l Symp. Circuits and Systems, pp. 795798, 2006.
[7] J.M. Muller, Elementary Functions: Algorithms and Implementation, second ed. Birkhauser, 2006.
[8] F. de Dinechin and A. Tisserand, “Multipartite Table Methods,” IEEE Trans. Computers, vol. 54, no. 5, pp. 319330, May 2005.
[9] Numerical Analysis, Encyclopedia Britannica Online, http://www.search.eb.com/ebarticle235500 , 2006.
[10] M. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann, 2004.
[11] D. Lewis, “Interleaved Memory Function Interpolators with Application to an Accurate LNS Arithmetic Unit,” IEEE Trans. Computers, vol. 43, no. 8, pp. 974982, Aug. 1994.
[12] J. Cao, B. Wei, and J. Cheng, “HighPerformance Architectures for Elementary Function Generation,” Proc. 15th IEEE Symp. Computer Arithmetic, pp. 136144, 2001.
[13] D. Lee, A. Abdul Gaffar, O. Mencer, and W. Luk, “Optimizing Hardware Function Evaluation,” IEEE Trans. Computers, vol. 54, no. 12, pp. 15201531, Dec. 2005.
[14] R. Michard, A. Tisserand, and N. VeyratCharvillon, “Small FPGA Polynomial Approximations with 3Bit Coefficients and LowPrecision Estimations of the Powers of X,” Proc. 16th IEEE Int'l Conf. ApplicationSpecific Systems, Architecture and Processors, pp.334339, 2005.
[15] A. Noetzel, “An Interpolating Memory Unit for Function Evaluation: Analysis and Design,” IEEE Trans. Computers, vol. 38, no. 3, pp. 377384, Mar. 1989.
[16] N. Takagi, “Powering by a Table LookUp and a Multiplication with Operand Modification,” IEEE Trans. Computers, vol. 47, no. 11, pp. 12161222, Nov. 1998.
[17] M. Arnold and M. Winkel, “A SingleMultiplier Quadratic Interpolator for LNS Arithmetic,” Proc. 19th IEEE Int'l Conf. Computer Design, pp. 178183, 2001.
[18] J. Detrey and F. de Dinechin, “TableBased Polynomials for Fast Hardware Function Evaluation,” Proc. 16th IEEE Int'l Conf. ApplicationSpecific Systems, Architecture and Processors, pp. 328333, 2005.
[19] J. Piñeiro, S. Oberman, J. Muller, and J. Bruguera, “HighSpeed Function Approximation Using a Minimax Quadratic Interpolator,” IEEE Trans. Computers, vol. 54, no. 3, pp. 304318, Mar. 2005.
[20] M. Schulte and E. Swartzlander Jr., “Hardware Designs for Exactly Rounded Elementary Functions,” IEEE Trans. Computers, vol. 43, no. 8, pp. 964973, Aug. 1994.
[21] E.G. Walters III and M. Schulte, “Efficient Function Approximation Using Truncated Multipliers and Squarers,” Proc. 17th IEEE Symp. Computer Arithmetic, pp. 232239, 2005.
[22] H. Aus and G. Korn, “TableLookup/Interpolation Function Generation for FixedPoint Digital Computations,” IEEE Trans. Computers, vol. 18, pp. 745749, 1969.
[23] V. Paliouras, K. Karagianni, and T. Stouraitis, “A FloatingPoint Processor for Fast and Accurate Sine/Cosine Evaluation,” IEEE Trans. Circuits and Systems II: Analog and Digital Signal Processing, vol. 47, no. 5, pp. 441451, 2000.
[24] J. McCollum, J. Lancaster, D. Bouldin, and G. Peterson, “Hardware Acceleration of PseudoRandom Number Generation for Simulation Applications,” Proc. 35th IEEE Southeastern Symp. System Theory, pp. 299303, 2003.
[25] P. Lamarche and Y. Savaria, “VHDL Source Code Generator and Analysis Tool to Design Linear Interpolators,” Proc. First IEEE Northeast Workshop Circuits and Systems, pp. 6972, 2003.
[26] J. Rice, The Approximation of Functions, vol. 1. AddisonWesley, 1964.
[27] J. Mathews, Numerical Methods for Mathematics, Science, and Engineering. Prentice Hall, 1992.
[28] D. Lee, W. Luk, J. Villasenor, and P. Cheung, “Hierarchical Segmentation Schemes for Function Evaluation,” Proc. IEEE Int'l Conf. FieldProgrammable Technology, pp. 9299, 2003.
[29] D. Lee and J. Villasenor, “A BitWidth Optimization Methodology for PolynomialBased Function Evaluation,” IEEE Trans. Computers, vol. 56, no. 4, pp. 567571, Apr. 2007.
[30] R. Michard, A. Tisserand, and N. VeyratCharvillon, “Optimisation d'Opérateurs Arithmétiques Matériels à Base d'Approximations Polynomiales,” Proc. Symp. Architectures Nouvelles de Machine, pp. 130141, 2006.
[31] C. Maxfield, The Design Warrior's Guide to FPGAs. Newnes, 2004.
[32] Using LookUp Tables as Distributed RAM in Spartan3 Generation FPGAs (Xilinx Application Note: XAPP464). Xilinx, http://www. xilinx.com/bvdocs/appnotesxapp464.pdf , 2005.
[33] Design Tips for HDL Implementation of Arithmetic Functions: Xilinx Application Note: XAPP215, Xilinx, http://www.xilinx.com/bvdocs/appnotesxapp215.pdf , 2000.
[34] Variable Parallel Virtex Multiplier V2.0: Xilinx Logicore Product Specification. Xilinx, http:/www.xilinx.com, 2000.
[35] Xilinx Univ. Program VirtexII Pro Development System: Hardware Reference Manual, Xilinx, http://www.xilinx.com/univxupv2p.html, 2005.
[36] V. Jain, S. Wadekar, and L. Lin, “A Universal Nonlinear Component and Its Application to WSI,” IEEE Trans. Components, Hybrids, and Manufacturing Technology, vol. 16, no. 7, pp. 656664, 1993.
[37] P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators,” Math. Computation, vol. 65, no. 213, pp. 203213, 1996.
[38] “Power Consumption in 65 nm FPGAs,” Xilinx White Paper WP246, Xilinx, http://www.xilinx.com/bvdocs/whitepapers wp246.pdf, 2006.