
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Sandro Bartolini, Irina Branovic, Roberto Giorgi, Enrico Martinelli, "Effects of InstructionSet Extensions on an Embedded Processor: A Case Study on Elliptic Curve Cryptography over GF(2/sup m/)," IEEE Transactions on Computers, vol. 57, no. 5, pp. 672685, May, 2008.  
BibTex  x  
@article{ 10.1109/TC.2007.70832, author = {Sandro Bartolini and Irina Branovic and Roberto Giorgi and Enrico Martinelli}, title = {Effects of InstructionSet Extensions on an Embedded Processor: A Case Study on Elliptic Curve Cryptography over GF(2/sup m/)}, journal ={IEEE Transactions on Computers}, volume = {57}, number = {5}, issn = {00189340}, year = {2008}, pages = {672685}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2007.70832}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Effects of InstructionSet Extensions on an Embedded Processor: A Case Study on Elliptic Curve Cryptography over GF(2/sup m/) IS  5 SN  00189340 SP672 EP685 EPD  672685 A1  Sandro Bartolini, A1  Irina Branovic, A1  Roberto Giorgi, A1  Enrico Martinelli, PY  2008 KW  Cryptography KW  Elliptic curves KW  Performance Evaluation KW  Public key cryptosystems KW  Processor Architectures KW  Pipeline processors KW  Instruction set design KW  Hardware/software interfaces KW  Microprocessor/microcomputer applications KW  Portable devices VL  57 JA  IEEE Transactions on Computers ER   
[1] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An Infrastructure for Computer System Modeling,” Computer, vol. 35, no. 2, pp. 5659, Feb. 2002.
[2] Intel™ XScale® Core Developer's Manual, http:/developer.intel. com, 2007.
[3] SimpleScalar Architectural Simulator, http:/www.simplescalar. com, 2007.
[4] MIRACL Big Integer Library, http://indigo.ie~mscott, 2007.
[5] Nat'l Inst. Standards and Technology (NIST), Digital Signature Standard (DSS), Fed. Information Processing Standards (FIPS) Publication 1862, Jan. 2000.
[6] W. Diffie and M.E. Hellman, “New Directions in Cryptography,” IEEE Trans. Information Theory, vol. 22, pp. 644654, Nov. 1976.
[7] T. ElGamal, “A PublicKey Cryptosystem and Signature Scheme Based on Discrete Logarithms,” IEEE Trans. Information Theory, vol. 31, no. 4, pp. 469472, July 1985.
[8] A.J. Menezes, Elliptic Curve Public Key Cryptosystems. Kluwer Academic, 1995.
[9] R. Schroeppel, H. Orman, S. O'Malley, and O. Spatscheck, “Fast Key Exchange with Elliptic Curve Cryptosystems,” Proc. Advances in Cryptology, pp. 4356, 1995.
[10] A. Karatsuba and Y. Ofman, “Multiplication of Multidigit Numbers on Automata,” Soviet PhysicsDoklady, vol. 7, pp. 595596, 1963.
[11] S.S. Erdem and Ç.K. Koç, “A Less Recursive Variant of KaratsubaOfman Algorithm for Multiplying Operands of Size a Power of Two,” Proc. 16th IEEE Int'l Symp. Computer Arithmetic, pp. 2835, June 2003.
[12] P.L. Montgomery, “Modular Multiplication without Trial Division,” Math. of Computation, vol. 44, pp. 519521, 1985.
[13] Ç.K. Koç and T. Acar, “Montgomery Multiplication in ${\rm GF}(2^{\rm k})$ ,” Design, Codes and Cryptography, vol. 14, no. 1, pp. 5967, Jan. 1998.
[14] D.A. Knuth, The Art of Computer Programming 2, Seminumerical Algorithms, second ed. AddisonWesley, 1981.
[15] D.R. Hankerson, J.C. López Hernandes, and A.J. Menezes, “Software Implementations of Elliptic Curve Cryptography over Binary Fields,” Proc. Second Int'l Workshop Cryptographic Hardware and Embedded Systems, pp. 124, 2000.
[16] J. López and R. Dahab, “Fast Multiplication on Elliptic Curves over ${\rm GF}(2^{\rm m})$ without Precomputation,” Lecture Notes in Computer Science, vol. 1717, pp. 316327, SpringerVerlag, 1999.
[17] I.F. Blake, G. Seroussi, and N.P. Smart, Elliptic Curves in Cryptography. Cambridge Univ. Press, 1999.
[18] A. Weimerskirch, D. Stebila, and S. Chang Shantz, “Generic ${\rm GF}(2^{\rm m})$ Implementation in Software and Its Application in ECC,” Proc. Eighth Australasian Conf. Information Security and Privacy, 2003.
[19] A.M. Fiskiran and R.B. Lee, “Evaluating Instruction Set Extensions for Fast Arithmetic on Binary Finite Fields,” Proc. 15th IEEE Int'l Conf. ApplicationSpecific Systems, Architectures, and Processors, pp.125136, Sept. 2004.
[20] J. Großschädl and G. Kamendje, “Instruction Set Extension for Fast Elliptic Curve Cryptography over Binary Finite Fields ${\rm GF}(2^{\rm m})$ ,” Proc. 14th IEEE Int'l Conf. ApplicationSpecific Systems, Architectures and Processors, pp. 455468, June 2003.
[21] S. Bartolini, I. Branovic, R. Giorgi, and E. Martinelli, “A Performance Evaluation of ARM ISA Extensions for Elliptic Curve Cryptography over Binary Finite Fields,” Proc. 16th IEEE Symp. Computer Architecture and High Performance Computing, pp.238245, Oct. 2004.
[22] H. Eberle, A. Wander, N. Gura, and S. Chang Shantz, “Architectural Extensions for Elliptic Curve Cryptography over ${\rm GF}(2^{\rm m})$ on 8bit Microprocessors,” Proc. 16th IEEE Int'l Conf. ApplicationSpecific Systems, Architecture Processors, pp. 343349, July 2005.
[23] V. Gupta, M. Wurm, Y. Zhu, M. Millard, S. Fung, N. Gura, H. Eberle, and S. Chang Shantz, “Sizzle: A StandardsBased EndtoEnd Security Architecture for the Embedded Internet,” Pervasive and Mobile Computing J., vol. 1, no. 4, pp. 425445, Dec. 2005.
[24] H. Eberle, N. Gura, S. Chang Shantz, V. Gupta, and L. Rarick, “A PublicKey Cryptographic Processor for RSA and ECC,” Proc. 15th IEEE Conf. ApplicationSpecific Systems, Architectures and Processors, pp. 98110, Sept. 2004.
[25] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms, second ed. MIT Press and McGrawHill, 2001.
[26] P. Montgomery, “Speeding the Pollard and Elliptic Curve Methods of Factorization,” Math. of Computation, vol. 48, pp. 243264, 1987.
[27] G.B. Agnew, R.C. Mullin, and S.A. Vanstone, “An Implementation of Elliptic Curve Cryptosystems over ${\rm F}2^{155}$ ,” IEEE J. Selected Areas in Comm., vol. 11, no. 5, June 1993.
[28] E. Savaş, A.F. Tenca, and Ç.K. Koç, “DualField Multiplier Architecture for Cryptographic Applications,” Conf. Record 37th Asilomar Conf. Signals, Systems, and Computers, pp. 374378, Nov. 2003.
[29] J. Großschädl, A BitSerial Unified Multiplier Architecture for Finite Fields GF(p) and ${\rm GF}(2^{\rm m})$ , Lecture Notes in Computer Science, vol. 2162, pp. 202219, SpringerVerlag, 2001.
[30] J. López and R. Dahab, “Improved Algorithms for Elliptic Curve Arithmetic in ${\rm GF}(2^{\rm n})$ ,” Technical Report IC9839, Relatório Técnico, Oct. 1998.
[31] J.L. Hennessy and D.A. Patterson, Computer Architecture: A Quantitative Approach, third ed. MorganKaufmann, 2003.
[32] N. Koblitz, “Elliptic Curve Cryptosystems,” Math. of Computation, vol. 48, pp. 203209, 1987.
[33] V. Miller, “Use of Elliptic Curves in Cryptography,” Proc. Advances in Cryptology '85, 1985.
[34] M. Brown, D. Hankerson, J. Lopez, and A. Menezes, “Software Implementation of the NIST Elliptic Curves over Prime Fields,” Proc. Cryptology Track of the RSA Conf., D. Naccache, ed., pp. 250265, 2001.
[35] NIOSII Processor Web site, http://www.altera.com/products/ip/processors nios2/, 2007.
[36] A. ReyhaniMasoleh and M.A. Hasan, “Low Complexity Bit Parallel Architectures for Polynomial Basis Multiplication over ${\rm GF}(2^{\rm m})$ ,” IEEE Trans. Computers, vol. 53, no. 8, pp. 945959, Aug. 2004.
[37] G.B. Agnew, T. Beth, R.C. Mullin, and S.A. Vanstone, “Arithmetic Operations in ${\rm GF}(2^{\rm m})$ ,” J. Cryptology, vol. 6, pp. 313, 1993.
[38] A.J. Menezes, I.F. Blake, X. Gao, R.C. Mullin, S.A. Vanstone, and T. Yaghoobian, Applications of Finite Fields. Kluwer Academic, 1993.
[39] Ç.K. Koç and B. Sunar, “LowComplexity BitParallel Canonical and Normal Basis Multipliers for a Class of Finite Fields,” IEEE Trans. Computers, vol. 47, no. 3, pp. 353356, Mar. 1998.
[40] J.A. Solinas, “Efficient Arithmetic on Koblitz Curves,” Designs, Codes and Cryptography, vol. 19, pp. 195249, 2000.
[41] C.H. Lim and P.J. Lee, “More Flexible Exponentiation with Precomputation,” Lecture Notes in Ccomputer Science, vol. 839, pp.95107, SpringerVerlag, 1994.
[42] D.V. Chudnovsky and G.V. Chudnovsky, “Sequences of Numbers Generated by Addition in Formal Groups and New Primality and Factorization Tests,” Advances in Applied Math., vol. 7, pp. 385434, 1987.
[43] S. Okada, N. Torii, K. Itoh, and M. Takenaka, “Implementation of Elliptic Curve Cryptographic Coprocessor over ${\rm GF}(2^{\rm m})$ on an FPGA,” Proc. Fourth Int'l Workshop Cryptographic Hardware and Embedded Systems, pp. 2540, Jan. 2002.
[44] M. Ernst, M. Jung, F. Madlener, S. Huss, and R. Blümel, “A Reconfigurable System on Chip Implementation for Elliptic Curve Cryptography over GF(2n),” Proc. Fourth Int'l Workshop Cryptographic Hardware and Embedded Systems, pp. 381399, Jan. 2003.
[45] V. Miller, “Use of Elliptic Curves in Cryptography,” Proc. Advances in Cryptology '85, pp. 417426, 1986.
[46] Pentium4 IA32 Intel Architecture Optimization Reference Manual, www.intel.com, 2007.