
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Francisco Rodr?guez Henr?quez, Guillermo MoralesLuna, Julio López, "LowComplexity BitParallel Square Root Computation over GF(2^{m}) for All Trinomials," IEEE Transactions on Computers, vol. 57, no. 4, pp. 472480, April, 2008.  
BibTex  x  
@article{ 10.1109/TC.2007.70822, author = {Francisco Rodr?guez Henr?quez and Guillermo MoralesLuna and Julio López}, title = {LowComplexity BitParallel Square Root Computation over GF(2^{m}) for All Trinomials}, journal ={IEEE Transactions on Computers}, volume = {57}, number = {4}, issn = {00189340}, year = {2008}, pages = {472480}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2007.70822}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  LowComplexity BitParallel Square Root Computation over GF(2^{m}) for All Trinomials IS  4 SN  00189340 SP472 EP480 EPD  472480 A1  Francisco Rodr?guez Henr?quez, A1  Guillermo MoralesLuna, A1  Julio López, PY  2008 KW  Computations in finite fields KW  Computer arithmetic KW  Algorithms VL  57 JA  IEEE Transactions on Computers ER   
[1] “IEEE P1363: Standard Specifications for Public Key Cryptography” IEEE Standards documents, Draft Version D18. IEEE, http://grouper.ieee.org/groups1363/, Nov. 2004.
[2] J. Daemen and V. Rijmen, “The Design of Rijndael,” AES: The Advance Encryption Standard. SpringerVerlag, 2002.
[3] D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Cryptography. SpringerVerlag, 2004.
[4] R. Schroeppel, C. Beaver, R. Gonzales, R. Miller, and T. Draelos, “A LowPower Design for an Elliptic Curve Digital Signature Chip,” Proc. Fourth Int'l Workshop Cryptographic Hardware and Embedded Systems, B. Kaliski, Ç. Koç, and C. Paar, eds., pp. 366380, Aug. 2002.
[5] G. Orlando and C. Paar, “An Efficient Squaring Architecture for ${\rm GF}(2^{m})$ and Its Applications in Cryptographic Systems,” IEE Electronic Letters, vol. 36, no. 13, pp. 11161117, June 2000.
[6] D.E. Knuth, The Art of Computer Programming, third ed. AddisonWesley, 1997.
[7] R. Avanzi, “Another Look at Square Roots and Traces (and Quadratic Equations) in Fields of Even Characteristic,” Cryptology ePrint Archive Report 2007/103, http:/eprint.iacr.org/, 2007.
[8] M. Scott, “Optimal Irreducible Polynomials for ${\rm GF}(2^{m})$ Arithmetic,” Cryptology ePrint Archive Report 2007/192, http:/eprint.iacr.org/, 2007.
[9] D. Hankerson and F. RodríguezHenríquez, “Parallel Formulation of Scalar Multiplication on Koblitz Curves,” Report CACR 200717, Center for Applied Cryptographic Research, http:/www.cacr.math.uwaterloo.ca/, 2007.
[10] F. RodríguezHenríquez, G. MoralesLuna, N. Saqib, and N. CruzCortés, “Parallel ItohTsujii Multiplicative Inversion Algorithm for a Special Class of Trinomials,” Cryptology ePrint Archive Report 2006/035, http:/eprint.iacr.org/, 2006.
[11] K. Fong, D. Hankerson, J. López, and A. Menezes, “Field Inversion and Point Halving Revisited,” IEEE Trans. Computers, vol. 53, no. 8, pp. 10471059, Aug. 2004.
[12] R. Dahab, D. Hankerson, F. Hu, M. Long, J. Lopez, and A. Menezes, “Software Multiplication Using Normal Bases,” Technical Report CACR 200412, Dept. of Combinatorics and Optimization, Univ. of Waterloo, p. 21, 2004.
[13] F. RodríguezHenríquez, G. MoralesLuna, and J. LópezHernández, “LowComplexity BitParallel Square Root Computation over ${\rm GF}(2^{m})$ for All Trinomials,” Cryptology ePrint Archive Report 2006/133, http://eprint.iacr.org/, 2006.
[14] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography. CRC Press, Oct. 1996.
[15] H. Wu, “Low Complexity BitParallel Finite Field Arithmetic Using Polynomial Basis,” Proc. First Int'l Workshop Cryptographic Hardware and Embedded Systems, Ç. Koç and C. Paar, eds., pp. 280291, Aug. 1999.
[16] H. Wu, “On Complexity of Squaring Using Polynomial Basis in ${\rm GF}(2^{m})$ ,” Proc. Seventh Ann. Int'l Workshop Selected Areas in Cryptography, pp. 118129, Sept. 2000.
[17] Recommended Elliptic Curves for Federal Government Use, special publication, Nat'l Inst. Standards and Tech nology, http://csrc.nist.gov/csrcfedstandards.html , July 1999.
[18] R. Schroeppel, “Elliptic Curve Point Ambiguity Resolution Apparatus and Method,” Int'l Application Number PCT/US00/31014, 9 Nov. 2000.
[19] E.W. Knudsen, “Elliptic Scalar Multiplication Using Point Halving,” Advances in Cryptology—Proc. Fifth Int'l Conf. Theory and Applications of Cryptology and Information Security, pp. 135149, 1999.