
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Nicolas Brisebarre, JeanMichel Muller, "Correctly Rounded Multiplication by Arbitrary Precision Constants," IEEE Transactions on Computers, vol. 57, no. 2, pp. 165174, February, 2008.  
BibTex  x  
@article{ 10.1109/TC.2007.70813, author = {Nicolas Brisebarre and JeanMichel Muller}, title = {Correctly Rounded Multiplication by Arbitrary Precision Constants}, journal ={IEEE Transactions on Computers}, volume = {57}, number = {2}, issn = {00189340}, year = {2008}, pages = {165174}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2007.70813}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Correctly Rounded Multiplication by Arbitrary Precision Constants IS  2 SN  00189340 SP165 EP174 EPD  165174 A1  Nicolas Brisebarre, A1  JeanMichel Muller, PY  2008 KW  computer arithmetic KW  floatingpoint arithmetic VL  57 JA  IEEE Transactions on Computers ER   
[1] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Applied Math. Series 55, US Nat'l Bureau of Standards, 1964.
[2] N. Brisebarre, J.M. Muller, and S. Raina, “Accelerating Correctly Rounded FloatingPoint Division When the Divisor Is Known in Advance,” IEEE Trans. Computers, vol. 53, no. 8, pp. 10691072, Aug. 2004.
[3] M.A. CorneaHasegan, R.A. Golliver, and P. Markstein, “Correctness Proofs Outline for NewtonRaphson Based FloatingPoint Divide and Square Root Algorithms,” Proc. 14th IEEE Symp. Computer Arithmetic, I. Koren and P. Kornerup, eds., pp. 96105, Apr. 1999.
[4] B.P. Flannery, W.H. Press, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes in C, second ed. Cambridge Univ. Press, 1992.
[5] D. Goldberg, “What Every Computer Scientist Should Know about FloatingPoint Arithmetic,” ACM Computing Surveys, vol. 23, no. 1, pp. 547, Mar. 1991.
[6] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers. Oxford Univ. Press, 1979.
[7] J. Harrison, “A MachineChecked Theory of FloatingPoint Arithmetic,” Proc. 12th Int'l Conf. Theorem Proving in Higher Order Logics, Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L.Théry, eds., pp. 113130, Sept. 1999.
[8] W. Kahan, “A Logarithm Too Clever by Half,” http://http.cs.berkeley.edu/ wkahanLOG10HAF.TXT , 2004.
[9] A.Y. Khinchin, Continued Fractions. Dover, 1997.
[10] V. Lefèvre, “An Algorithm that Computes a Lower Bound on the Distance between a Segment and $Z^{2}$ ,” Developments in Reliable Computing, pp. 203212, Kluwer Academic, 1999.
[11] R.C. Li, S. Boldo, and M. Daumas, “Theorems on Efficient Argument Reductions,” Proc. 16th IEEE Symp. Computer Arithmetic, 2003.
[12] P. Markstein, IA64 and Elementary Functions: Speed and Precision, HewlettPackard Professional Books. Prentice Hall, 2000.
[13] P.W. Markstein, “Computation of Elementary Functions on the IBM Risc System/6000 Processor,” IBM J. Research and Development, vol. 34, no. 1, pp. 111119, Jan. 1990.
[14] J.M. Muller, “On the Definition of ${\rm ulp}(x)$ ,” Technical Report 200509, LIP Laboratory, ENS Lyon, ftp://ftp.enslyon.fr/pub/LIP/Rapports/RR/ RR2005RR200509.pdf, 2005.
[15] M.A. Overton, Numerical Computing with IEEE FloatingPoint Arithmetic. SIAM, 2001.
[16] O. Perron, Die Lehre von den Kettenbrüchen, 3. verb. und erweiterte Aufl., pp. 19541957. Teubner,
[17] H.M. Stark, An Introduction to Number Theory. MIT Press, 1981.