
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Marcelo Kaihara, Naofumi Takagi, "Bipartite Modular Multiplication Method," IEEE Transactions on Computers, vol. 57, no. 2, pp. 157164, February, 2008.  
BibTex  x  
@article{ 10.1109/TC.2007.70793, author = {Marcelo Kaihara and Naofumi Takagi}, title = {Bipartite Modular Multiplication Method}, journal ={IEEE Transactions on Computers}, volume = {57}, number = {2}, issn = {00189340}, year = {2008}, pages = {157164}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2007.70793}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Bipartite Modular Multiplication Method IS  2 SN  00189340 SP157 EP164 EPD  157164 A1  Marcelo Kaihara, A1  Naofumi Takagi, PY  2008 KW  Computer arithmetic KW  Algorithms VL  57 JA  IEEE Transactions on Computers ER   
[1] ANSI X9.30, Public Key Cryptography for the Financial Services Industry: Part 1: The Digital Signature Algorithm (DSA), Am. Nat'l Standards Inst., Am. Bankers Assoc., 1997.
[2] G.R. Blakley, “A Computer Algorithm for Calculating the Product AB Modulo M,” IEEE Trans. Computers, vol. 32, no. 5, pp. 497500, May 1983.
[3] E.F. Brickell, “A Fast Modular Multiplication Algorithm with Application to Two Key Cryptography,” Advances in Cryptology— Proc. CRYPTO '82, pp. 5160, 1983.
[4] W. Diffie and M.E. Hellman, “New Directions in Cryptography,” IEEE Trans. Information Theory, vol. 22, no. 11, pp. 644654, Nov. 1976.
[5] T. ElGamal, “A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms,” IEEE Trans. Information Theory, vol. 31, no. 4, pp. 469472, July 1985.
[6] W. Fischer and J.P. Seifert, “Increasing the Bitlength of a CryptoCoprocessor,” Proc. Fifth Int'l Workshop Cryptographic Hardware and Embedded Systems (CHES '03), pp. 7181, 2003.
[7] M.E. Kaihara and N. Takagi, “A Hardware Algorithm for Modular Multiplication/Division,” IEEE Trans. Computers, vol. 54, no. 1, pp. 1221, Jan. 2005.
[8] M.E. Kaihara and N. Takagi, “Bipartite Modular Multiplication,” Proc. Seventh Int'l Workshop Cryptographic Hardware and Embedded Systems (CHES '05), pp. 201210, 2005.
[9] Ç.K. Koç, T. Acar, and B.S. Kaliski Jr., “Analyzing and Comparing Montgomery Multiplication Algorithms,” IEEE Micro, vol. 16, no. 3, pp. 2633, June 1996.
[10] P. Kornerup, “HighRadix Modular Multiplication for Cryptosystems,” Proc. 11th IEEE Symp. Computer Arithmetic (ARITH11), pp.277283, 1993.
[11] P.L. Montgomery, “Modular Multiplication without Trial Division,” Math. Computation, vol. 44, no. 170, pp. 519521, Apr. 1985.
[12] H. Orup, “Simplifying Quotient Determination in HighRadix Modular Multiplication,” Proc. 12th IEEE Symp. Computer Arithmetic (ARITH12), pp. 193199, 1995.
[13] R.L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital Signatures and PublicKey Cryptosystems,” Comm. ACM, vol. 21, no. 2, pp. 120126, Feb. 1978.
[14] K.R. Sloan, “Comments on a Computer Algorithm for Calculating the Product AB Modulo M,” IEEE Trans. Computers, vol. 34, no. 3, pp. 290292, Mar. 1985.
[15] N. Takagi, “A Radix4 Modular Multiplication Hardware Algorithm for Modular Exponentiation,” IEEE Trans. Computers, vol. 41, no. 8, pp. 949956, Aug. 1990.
[16] A.F. Tenca, G. Todorov, and Ç.K. Koç, “HighRadix Design of a Scalable Modular Multiplier,” Proc. Second Int'l Workshop Cryptographic Hardware and Embedded Systems (CHES '01), pp. 185201, 2001.
[17] C.D. Walter, “Space/Time TradeOffs for Higher Radix Modular Multiplication Using Repeated Addition,” IEEE Trans. Computers, vol. 46, no. 2, pp. 139141, Feb. 1997.
[18] C.D. Walter, “Systolic Modular Multiplication,” IEEE Trans. Computers, vol. 42, no. 3, pp. 376378, Mar. 1993.
[19] H. Wu, “Montgomery Multiplier and Squarer for a Class of Finite Fields,” IEEE Trans. Computers, vol. 51, no. 5, pp. 521529, May 2002.