This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Subquadratic Computational Complexity Schemes for Extended Binary Field Multiplication Using Optimal Normal Bases
October 2007 (vol. 56 no. 10)
pp. 1435-1437
Based on a recently proposed Toeplitz matrix-vector product approach, a subquadratic computational complexity scheme is presented for multiplications in binary extended finite fields using Type I and II optimal normal bases.

[1] R. Mullin, I. Onyszchuk, S.A. Vanstone, and R. Wilson, “Optimal Normal Bases in $GF(p^n)$ ,” Discrete Applied Math., vol. 22, pp. 149-161, 1988/1989.
[2] J.L. Massey and J.K. Omura, “Computational Method and Apparatus for Finite Field Arithmetic,” US Patent No. 4,587,627, to OMNET Assoc., Sunnyvale Calif., Washington, D.C.: Patent and Trademark Office, 1986.
[3] M. Leone, “A New Low Complexity Parallel Multiplier for a Class of Finite Fields,” Proc. Workshop Cryptographic Hardware and Embedded Systems (CHES '01), pp.160-170, 2001.
[4] H. Fan and M.A. Hasan, “A New Approach to Subquadratic Space Complexity Parallel Multipliers for Extended Binary Fields,” IEEE Trans. Computers, vol. 56, no. 2, pp. 224-233, Feb. 2007.
[5] B. Sunar, “A Generalized Method for Constructing Subquadratic Complexity $GF(2^{k})$ Multipliers,” IEEE Trans. Computers, vol. 53, no. 9, pp. 1097-1105, Sept. 2004.
[6] S. Winograd, Arithmetic Complexity of Computations. SIAM, 1980.
[7] S. Gao and H.W. Lenstra Jr., “Optimal Normal Bases,” Design, Codes, and Cryptography, vol. 2, pp. 315-323, 1992.
[8] A. Menezes, E. Teske, and A. Weng, “Weak Fields for ECC,” Proc. Cyrptology Track-RSA Conf. (CT-RSA '04), pp. 366-386, 2004.
[9] S. Gao, “Normal Bases over Finite Fields,” PhD thesis, Univ. of Waterloo, 1993.
[10] M.A. Hasan, M.Z. Wang, and V.K. Bhargava, “Modular Construction of Low Complexity Parallel Multipliers for a Class of Finite Fields $GF(2^{m})$ ,” IEEE Trans. Computers, vol. 41, no. 8, pp. 962-971, Aug. 1992.
[11] M.A. Hasan, M.Z. Wang, and V.K. Bhargava, “A Modified Massey-Omura Parallel Multiplier for a Class of Finite Fields,” IEEE Trans. Computers, vol. 42, no. 10, pp. 1278-1280, Oct. 1993.
[12] H. Fan, “Simple Multiplication Algorithm for a Class of $GF(2^n)$ ,” IEE Electronics Letters, vol. 32, no. 7, pp. 636-637, 1996.
[13] Ç.K. Koç and B. Sunar, “Low-Complexity Bit-Parallel Canonical and Normal Basis Multipliers for a Class of Finite Fields,” IEEE Trans. Computers, vol. 47, no. 3, pp. 353-356, Mar. 1998.
[14] S. Gao and S. Vanstone, “On Orders of Optimal Normal Basis Generators,” Math. Computation, vol. 64, no. 2, pp. 1227-1233, 1995.
[15] B. Sunar and Ç.K. Koç, “An Efficient Optimal Normal Basis Type II Multiplier,” IEEE Trans. Computers, vol. 50, no. 1, pp. 83-87, Jan. 2001.
[16] C. Lee and C. Chang, “Low-Complexity Linear Array Multiplier for Normal Basis of Type-II,” Proc. IEEE Int'l Conf. Multimedia and Expo, pp.1515-1518, 2004.

Index Terms:
Finite field, subquadratic computational complexity multiplication, normal basis, optimal normal basis
Citation:
Haining Fan, M. Anwar Hasan, "Subquadratic Computational Complexity Schemes for Extended Binary Field Multiplication Using Optimal Normal Bases," IEEE Transactions on Computers, vol. 56, no. 10, pp. 1435-1437, Oct. 2007, doi:10.1109/TC.2007.1076
Usage of this product signifies your acceptance of the Terms of Use.