
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Haining Fan, M. Anwar Hasan, "Subquadratic Computational Complexity Schemes for Extended Binary Field Multiplication Using Optimal Normal Bases," IEEE Transactions on Computers, vol. 56, no. 10, pp. 14351437, October, 2007.  
BibTex  x  
@article{ 10.1109/TC.2007.1076, author = {Haining Fan and M. Anwar Hasan}, title = {Subquadratic Computational Complexity Schemes for Extended Binary Field Multiplication Using Optimal Normal Bases}, journal ={IEEE Transactions on Computers}, volume = {56}, number = {10}, issn = {00189340}, year = {2007}, pages = {14351437}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2007.1076}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Subquadratic Computational Complexity Schemes for Extended Binary Field Multiplication Using Optimal Normal Bases IS  10 SN  00189340 SP1435 EP1437 EPD  14351437 A1  Haining Fan, A1  M. Anwar Hasan, PY  2007 KW  Finite field KW  subquadratic computational complexity multiplication KW  normal basis KW  optimal normal basis VL  56 JA  IEEE Transactions on Computers ER   
[1] R. Mullin, I. Onyszchuk, S.A. Vanstone, and R. Wilson, “Optimal Normal Bases in $GF(p^n)$ ,” Discrete Applied Math., vol. 22, pp. 149161, 1988/1989.
[2] J.L. Massey and J.K. Omura, “Computational Method and Apparatus for Finite Field Arithmetic,” US Patent No. 4,587,627, to OMNET Assoc., Sunnyvale Calif., Washington, D.C.: Patent and Trademark Office, 1986.
[3] M. Leone, “A New Low Complexity Parallel Multiplier for a Class of Finite Fields,” Proc. Workshop Cryptographic Hardware and Embedded Systems (CHES '01), pp.160170, 2001.
[4] H. Fan and M.A. Hasan, “A New Approach to Subquadratic Space Complexity Parallel Multipliers for Extended Binary Fields,” IEEE Trans. Computers, vol. 56, no. 2, pp. 224233, Feb. 2007.
[5] B. Sunar, “A Generalized Method for Constructing Subquadratic Complexity $GF(2^{k})$ Multipliers,” IEEE Trans. Computers, vol. 53, no. 9, pp. 10971105, Sept. 2004.
[6] S. Winograd, Arithmetic Complexity of Computations. SIAM, 1980.
[7] S. Gao and H.W. Lenstra Jr., “Optimal Normal Bases,” Design, Codes, and Cryptography, vol. 2, pp. 315323, 1992.
[8] A. Menezes, E. Teske, and A. Weng, “Weak Fields for ECC,” Proc. Cyrptology TrackRSA Conf. (CTRSA '04), pp. 366386, 2004.
[9] S. Gao, “Normal Bases over Finite Fields,” PhD thesis, Univ. of Waterloo, 1993.
[10] M.A. Hasan, M.Z. Wang, and V.K. Bhargava, “Modular Construction of Low Complexity Parallel Multipliers for a Class of Finite Fields $GF(2^{m})$ ,” IEEE Trans. Computers, vol. 41, no. 8, pp. 962971, Aug. 1992.
[11] M.A. Hasan, M.Z. Wang, and V.K. Bhargava, “A Modified MasseyOmura Parallel Multiplier for a Class of Finite Fields,” IEEE Trans. Computers, vol. 42, no. 10, pp. 12781280, Oct. 1993.
[12] H. Fan, “Simple Multiplication Algorithm for a Class of $GF(2^n)$ ,” IEE Electronics Letters, vol. 32, no. 7, pp. 636637, 1996.
[13] Ç.K. Koç and B. Sunar, “LowComplexity BitParallel Canonical and Normal Basis Multipliers for a Class of Finite Fields,” IEEE Trans. Computers, vol. 47, no. 3, pp. 353356, Mar. 1998.
[14] S. Gao and S. Vanstone, “On Orders of Optimal Normal Basis Generators,” Math. Computation, vol. 64, no. 2, pp. 12271233, 1995.
[15] B. Sunar and Ç.K. Koç, “An Efficient Optimal Normal Basis Type II Multiplier,” IEEE Trans. Computers, vol. 50, no. 1, pp. 8387, Jan. 2001.
[16] C. Lee and C. Chang, “LowComplexity Linear Array Multiplier for Normal Basis of TypeII,” Proc. IEEE Int'l Conf. Multimedia and Expo, pp.15151518, 2004.