
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Kazuo Sakiyama, Lejla Batina, Bart Preneel, Ingrid Verbauwhede, "Multicore CurveBased Cryptoprocessor with Reconfigurable Modular Arithmetic Logic Units over GF(2^n)," IEEE Transactions on Computers, vol. 56, no. 9, pp. 12691282, September, 2007.  
BibTex  x  
@article{ 10.1109/TC.2007.1071, author = {Kazuo Sakiyama and Lejla Batina and Bart Preneel and Ingrid Verbauwhede}, title = {Multicore CurveBased Cryptoprocessor with Reconfigurable Modular Arithmetic Logic Units over GF(2^n)}, journal ={IEEE Transactions on Computers}, volume = {56}, number = {9}, issn = {00189340}, year = {2007}, pages = {12691282}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2007.1071}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Multicore CurveBased Cryptoprocessor with Reconfigurable Modular Arithmetic Logic Units over GF(2^n) IS  9 SN  00189340 SP1269 EP1282 EPD  12691282 A1  Kazuo Sakiyama, A1  Lejla Batina, A1  Bart Preneel, A1  Ingrid Verbauwhede, PY  2007 KW  Multiprocessor systems KW  processor architectures KW  reconfigurable hardware KW  arithmetic and logic units KW  public key cryptosystems. VL  56 JA  IEEE Transactions on Computers ER   
[1] W. Diffie and M.E. Hellman, “New Directions in Cryptography,” IEEE Trans. Information Theory, vol. 22, pp. 644654, 1976.
[2] R.L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital Signatures and PublicKey Cryptosystems,” Comm. ACM, vol. 21, no. 2, pp. 120126, 1978.
[3] N. Koblitz, “Elliptic Curve Cryptosystem,” Math. Computation, vol. 48, pp. 203209, 1987.
[4] V. Miller, “Uses of Elliptic Curves in Cryptography,” Advances in Cryptology: Proc. Int'l Cryptology Conf. (CRYPTO '85), H.C.Williams, ed., pp. 417426, 1985.
[5] N. Thériault, “Index Calculus Attack for Hyperelliptic Curves of Small Genus,” Advances in Cryptology—Proc. Ninth Int'l Conf. Theory and Application of Cryptology and Information Security (ASIACRYPT '03), C.S. Laih, ed., pp. 7592, 2003.
[6] A. Hodjat and I. Verbauwhede, “AreaThroughput TradeOffs for Fully Pipelined 30 to 70 Gbits/s AES Processors,” IEEE Trans. Computers, vol. 55, no. 4, pp. 366372, Apr. 2006.
[7] N. Koblitz, “CMCurves with Good Cryptographic Properties,” Advances in Cryptology: Proc. Int'l Cryptology Conf. (CRYPTO '91), J.Feigenbaum, ed., pp. 279287, 1991.
[8] P. Montgomery, “Speeding the Pollard and Elliptic Curve Methods of Factorization,” Math. Computation, vol. 48, no. 177, pp. 243264, 1987.
[9] N.P. Smart, “The Hessian Form of an Elliptic Curve,” Proc. Third Int'l Workshop Cryptographic Hardware and Embedded Systems (CHES '01), Ç.K. Koç, D. Naccache, and C. Paar, eds., pp. 121128, May 2001.
[10] M. Joye and S.M. Yen, “The Montgomery Powering Ladder,” Proc. Fourth Int'l Workshop Cryptographic Hardware and Embedded Systems (CHES '02), B.S. Kaliski Jr., Ç.K. Koç, and C. Paar, eds., pp.291302, 2002.
[11] T. Izu and T. Takagi, “A Fast Parallel Elliptic Curve Multiplication Resistant against Side Channel Attacks,” Proc. Fifth Int'l Workshop Practice and Theory in Public Key Cryptosystems (PKC '02), D.Naccache and P. Paillier, eds., pp. 280296, 2002.
[12] P.K. Mishra and P. Sarkar, “Parallelizing Explicit Formula for Arithmetic in the Jacobian of Hyperelliptic Curves,” Proc. Int'l Conf. Theory and Application of Cryptology and Information Security (ASIACRYPT '03), J. Hartmanis, G. Goos, and J. van Leeuwen, eds., pp. 93110, 2003.
[13] T. Wollinger, “Software and Hardware Implementation of Hyperelliptic Curve Cryptosystems,” PhD dissertation, RuhrUniv. Bochum, Germany, 2004.
[14] A. Hodjat, L. Batina, D. Hwang, and I. Verbauwhede, “HW/SW CoDesign of a Hyperelliptic Curve Cryptosystem Using a Microcode Instruction Set Coprocessor,” Elsevier Integration, the VLSI J., special issue on embedded cryptographic hardware, vol.40, no. 1, pp. 4551, 2006.
[15] A. Satoh and K. Takano, “A Scalable DualField Elliptic Curve Cryptographic Processor,” IEEE Trans. Computers, special issue on cryptographic hardware and embedded systems, vol. 52, no. 4, pp.449460, Apr. 2003.
[16] I. Blake, G. Seroussi, and N.P. Smart, Elliptic Curves in Cryptography. Cambridge Univ. Press, 1999.
[17] N. Koblitz, Algebraic Aspects of Cryptography, first ed. Springer, 1998.
[18] A. Menezes, Y.H. Wu, and R. Zuccherato, An Elementary Introduction to Hyperelliptic Curves—Appendix, pp. 155178. Springer, 1998.
[19] T. Itoh and S. Tsujii, “Effective Recursive Algorithm for Computing Multiplicative Inverses in ${\rm GF}(2^{m})$ ,” Electronics Letters, vol. 24, no. 6, pp. 334335, 1988.
[20] IEEE P1363/D13 (Draft Version 13), Standard Specifications for Public Key Cryptography, Nov. 1999.
[21] J. López and R. Dahab, “Fast Multiplication on Elliptic Curves over ${\rm GF}(2^{m})$ ,” Proc. First Int'l Workshop Cryptographic Hardware and Embedded Systems (CHES '99), Ç.K. Koç and C. Paar, eds., pp. 316327, 1999.
[22] B. Byramjee and S. Duquesne, Classification of Genus 2 Curves over $F_{2}^{n}$ and Optimization of Their Arithmetic, Cryptology ePrint Archive: Report 2004/107, 2004.
[23] D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curves Cryptography. Springer, 2004.
[24] N.A. Saqib, F. RodríguezHenruez, and A. DíazPérez, “A Reconfigurable Processor for High Speed Point Multiplication in Elliptic Curves,” Int'l J. Embedded Systems, vol. 1, nos. 3/4, pp. 237249, 2005.
[25] K. Sakiyama, B. Preneel, and I. Verbauwhede, “A Fast DualField Modular Arithmetic Logic Unit and Its Hardware Implementation,” Proc. IEEE Int'l Symp. Circuits and Systems (ISCAS '06), pp.787790, 2006.
[26] K. Sakiyama, L. Batina, B. Preneel, and I. Verbauwhede, “Superscalar Coprocessor for Highspeed CurveBased Cryptography,” Proc. Eighth Int'l Workshop Cryptographic Hardware and Embedded Systems (CHES '06), L. Goublin and M. Matsui, eds., pp. 415429, 2006.
[27] P. Schaumont and I. Verbauwhede, “Interactive Cosimulation with Partial Evaluation,” Proc. Design, Automation and Test in Europe Conf. (DATE '04), pp. 642647, 2004.
[28] US Dept. of Commerce and Nat'l Inst. of Standards and Technology, Digital Signature Standard (DSS) FIPS PUB 1862, Jan. 2000.
[29] F. Sozzani, G. Bertoni, S. Turcato, and L. Breveglieri, “A Parallelized Design for an Elliptic Curve Cryptosystem Coprocessor,” Proc. Int'l Symp. Information Technology: Coding and Computing (ITCC '05), pp. 626630, 2005.
[30] H. Eberle, N. Gura, and S.C. Shantz, “Cryptographic Processor for Arbitrary Elliptic Curves over ${\rm GF}(2^{m})$ ,” Proc. IEEE Int'l Conf. ApplicationSpecific Systems, Architectures, and Processors (ASAP '03), M. Schulte, S. Bhattacharyya, N. Burgess, and R. Schreiber, eds., pp. 444454, June 2003.
[31] R.C.C. Cheung, N.J. Telle, W. Luk, and P.Y.K. Cheung, “Customizable Elliptic Curve Cryptosystems,” IEEE Trans. Very Large Scale Integration Systems, vol. 13, no. 9, pp. 10481059, 2005.
[32] J. Lutz and A. Hasan, “High Performance FPGA Based Elliptic Curve Cryptographic CoProcessor,” Proc. Int'l Conf. Information Technology: Coding and Computing, vol. 02, p. 486, 2004.
[33] G. Orlando and C. Paar, “A HighPerformance Reconfigurable Elliptic Curve Processor for ${\rm GF}(2^{m})$ ,” Proc. Second Int'l Workshop Cryptographic Hardware and Embedded Systems (CHES '00), Ç.K. Koç and C. Paar, eds., pp. 4156, 2000.