
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
V. Mahalingam, Nagarajan Ranganathan, "Improving Accuracy in Mitchell's Logarithmic Multiplication Using Operand Decomposition," IEEE Transactions on Computers, vol. 55, no. 12, pp. 15231535, December, 2006.  
BibTex  x  
@article{ 10.1109/TC.2006.198, author = {V. Mahalingam and Nagarajan Ranganathan}, title = {Improving Accuracy in Mitchell's Logarithmic Multiplication Using Operand Decomposition}, journal ={IEEE Transactions on Computers}, volume = {55}, number = {12}, issn = {00189340}, year = {2006}, pages = {15231535}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2006.198}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Improving Accuracy in Mitchell's Logarithmic Multiplication Using Operand Decomposition IS  12 SN  00189340 SP1523 EP1535 EPD  15231535 A1  V. Mahalingam, A1  Nagarajan Ranganathan, PY  2006 KW  Computer arithmetic KW  error analysis KW  logarithmic number system KW  interpolation. VL  55 JA  IEEE Transactions on Computers ER   
[1] K.H. Abed and R. Siferd, “CMOS VLSI Implementation of a LowPower Logarithmic Converter,” IEEE Trans. Computers, vol. 52, no. 11, pp. 14211433, Nov. 2003.
[2] K.H. Abed and R. Siferd, “VLSI Implementation of a LowPower Antilogarithmic Converter,” IEEE Trans. Computers, vol. 52, no. 9, pp. 12211228, Sept. 2003.
[3] M. Arnold, T. Bailey, and J. Cowles, “Error Analysis of the Kmetz/Maenner Algorithm,” J. VLSI Signal Processing, pp. 3753, 2003.
[4] M.G. Arnold and C. Walter, “Unrestricted Faithful Rounding Is Good Enough for Some LNS Applications,” Proc. IEEE Symp. Computer Arithmetic, pp. 5658, 2001.
[5] T.A. Brubaker and J.C. Becker, “Multiplication Using Logarithms Implemented with ReadOnlyMemory,” IEEE Trans. Computers, pp. 761766, 1975.
[6] M. Combet, H. Zonneveld, and L. Verbeek, “Computation of the Base Two Logarithm of Binary Numbers,” IEEE Trans. Electronic Computers, pp. 863867, Dec. 1965.
[7] M.J. Duncan, “Improved Mitchell Based Logarithmic Multiplier for Low Power DSP Applications,” IEEE Int'l System on a Chip Conf. (SOCC), pp. 1720, 2003.
[8] E.L. Hall, D.D. Lynch, and S.J. Dwyer III, “Generation of Products and Quotients Using Approximate Binary Logarithms for Digital Filtering Applications,” IEEE Trans. Computers, vol. 19, no. 2, pp.97105, Feb. 1970.
[9] M. Ito, D. Chinnery, and K. Keutzer, “Low Power Multiplication Algorithm for Switching Activity Reduction through Operand Decomposition,” Proc. IEEE Int'l Conf. Computer Design (ICCD), 2003.
[10] N.G. Kingsbury and P.J.W. Rayner, “Digital Filtering Using Logarithmic Arithmetic,” IEEE Electronic Letters, pp. 5658, Jan. 1971.
[11] G.L. Kmetz, “Floating Point Logarithmic Conversion System,” United States Patent no. 4,583,180, Apr. 1986.
[12] F.S. Lai and C.F.E. Wu, “A Hybrid Number System Processor with Geometric and Complex Arithmetic Capabilities,” IEEE Trans. Computers, vol. 40, no. 8, pp. 652662, Aug. 1991.
[13] D.M. Lewis, “Interleaved Memory Function Interpolators With Application to Accurate LNS Arithmetic Unit,” IEEE Trans. Computers, vol. 43, no. 8, pp. 974982, Aug. 1994.
[14] R. Maenner, “A Fast Integer Binary Logarithm for Large Arguments,” IEEE Micro, pp. 4145, Dec. 1987.
[15] J.N. Mitchell, “Computer Multiplication and Division using Binary Logarithms,” IRE Trans. Electronic Computers, pp. 512517, vol. 11, Aug. 1962.
[16] R. Muscedere, “Difficult Operations in the Multidimensional Logarithmic Number System,” PhD thesis, Univ. of Windsor, 2003.
[17] R. Muscedere, V. Dimitrov, G.A. Jullien, and C.W. Miller, “Efficient Techniques for BinarytoMultidigit Multidimensional Logarithmic Number System Conversion Using RangeAddressable LookUp Tables,” IEEE Trans. Computers, vol. 54, no. 3, pp.257272, Mar. 2005.
[18] V. Paliouras and T. Stouraitis, “Logarithm Number System for Low Power Arithmetic,” Proc. Int'l Workshop Power and Timing Modeling Optimization and Simulation, pp. 285294, 2000.
[19] S.L. SanGregory, R.E. Siferd, C. Brother, and D. Gallagher, “LowPower Logarithm Approximation with CMOS VLSI Implementation,” Proc. IEEE Midwest Symp. Circuits and Systems, Aug. 1999.
[20] E.E. Swartzlander, “Sign/Logarithm Arithmetic for FFT Implementation,” IEEE Trans. Computers, vol. 32, pp. 526534, 1983.
[21] E.E. Swartzlander, “The Sign/Logarithm Number System,” IEEE Trans. Computers, vol. 24, no. 12, pp. 12381242, Dec. 1975.
[22] F.J. Taylor, R. Gill, and J. Joseph, “A 20 Bit Logarithmic Number System Processor,” IEEE Trans. Computers, vol. 37, no. 2, pp. 190200, Feb. 1988.
[23] “Hypermedia Image Processing Reference,” http://www.cee. hw.ac.uk/hiprgsmooth.html , Heriot Watt Univ., Edinburgh, 1994.