This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Efficient Bit-Parallel Multiplier for Irreducible Pentanomials Using a Shifted Polynomial Basis
September 2006 (vol. 55 no. 9)
pp. 1211-1215
In this paper, we present a bit-parallel multiplier for GF(2^m) defined by an irreducible pentanomial x^m+x^{k_3}+x^{k_2}+x^{k_1}+1, where 1\leq k_1 < k_2

[1] H. Fan and Y. Dai, “Fast Bit-Parallel $GF(2^n)$ Multiplier for All Trinomials,” IEEE Trans. Computers, vol. 54, no. 4, pp. 485-490, Apr. 2005.
[2] D. Hankerson, J.L. Hernandez, and A. Menezes, “Software Implementation of Elliptic Curve Cryptography over Binary Fields,” Proc. CHES 2000, pp. 1-24, 2000.
[3] A. Halbutogullari and C.K. Koc, “Mastrovito Multiplier for General Irreducible Polynomials,” IEEE Trans. Computers, vol. 49, no. 5, pp. 503-518, May 2000.
[4] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications. Cambridge Univ. Press, 1994.
[5] A.J. Menezes, I.F. Blake, X. Gao, R.C. Mullin, S.A. Vanstone, and T. Yaghoobian, Applications of Finite Fields. Kluwer Academic, 1993.
[6] A. Reyhani-Masoleh and M.A. Hasan, “Low Complexity Bit Parallel Architectures for Polynomial Basis Multiplication over $GF(2^m)$ ,” IEEE Trans. Computers, vol. 53, no. 8, pp. 945-959, Aug. 2004.
[7] F. Rodriguez-Henriquez and C.K. Koc, “Parallel Multipliers Based on Special Irreducible Pentanomials,” IEEE Trans. Computers, vol. 52, no. 12, pp. 1535-1542, Dec. 2003.
[8] SEC2, Recommended Elliptic Curve Domain Parameters, 20 Sept. 2003.
[9] T. Zhang and K.K. Parhi, “Systematic Design of Original and Modified Mastrovito Multipliers for General Irreducible Polynomials,” IEEE Trans. Computers, vol. 50, no. 7, pp. 734-749, July 2001.

Index Terms:
Bit-parallel multiplier, finite field arithmetic, shifted polynomial basis, irreducible pentanomial.
Citation:
Sun-Mi Park, Ku-Young Chang, Dowon Hong, "Efficient Bit-Parallel Multiplier for Irreducible Pentanomials Using a Shifted Polynomial Basis," IEEE Transactions on Computers, vol. 55, no. 9, pp. 1211-1215, Sept. 2006, doi:10.1109/TC.2006.146
Usage of this product signifies your acceptance of the Terms of Use.