
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Haining Fan, M. Anwar Hasan, "Relationship between GF(2^m) Montgomery and Shifted Polynomial Basis Multiplication Algorithms," IEEE Transactions on Computers, vol. 55, no. 9, pp. 12021206, September, 2006.  
BibTex  x  
@article{ 10.1109/TC.2006.152, author = {Haining Fan and M. Anwar Hasan}, title = {Relationship between GF(2^m) Montgomery and Shifted Polynomial Basis Multiplication Algorithms}, journal ={IEEE Transactions on Computers}, volume = {55}, number = {9}, issn = {00189340}, year = {2006}, pages = {12021206}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2006.152}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Relationship between GF(2^m) Montgomery and Shifted Polynomial Basis Multiplication Algorithms IS  9 SN  00189340 SP1202 EP1206 EPD  12021206 A1  Haining Fan, A1  M. Anwar Hasan, PY  2006 KW  Finite field KW  multiplication KW  Montgomery multiplication algorithm KW  polynomial basis KW  shifted polynomial basis KW  irreducible trinomial. VL  55 JA  IEEE Transactions on Computers ER   
[1] B. Sunar and C.K. Koc, “Mastrovito Multiplier for All Trinomials,” IEEE Trans. Computers, vol. 48, no. 5, pp. 522527, May 1999.
[2] T. Zhang and K.K. Parhi, “Systematic Design of Original and Modified Mastrovito Multipliers for General Irreducible Polynomials,” IEEE Trans. Computers, vol. 50, no. 7, pp. 734749, July 2001.
[3] A. Halbutogullari and C.K. Koc, “Mastrovito Multiplier for General Irreducible Polynomials,” IEEE Trans. Computers, vol. 49, no. 5, pp. 503518, May 2000.
[4] C. Paar, “A New Architecture for a Parallel Finite Field Multiplier with Low Complexity based on Composite Fields,” IEEE Trans. Computers, vol. 45, no. 7, pp. 856861, July 1996.
[5] H. Wu, “Bit Parallel Finite Field Multiplier and Squarer Using Polynomial Basis,” IEEE Trans. Computers, vol. 51, no. 7, pp. 750758, July 2002.
[6] H. Wu, “Montgomery Multiplier and Squarer for a Class of Finite Fields,” IEEE Trans. Computers, vol. 51, no. 5, pp. 521529, May 2002.
[7] C.K. Koc and T. Acar, “Montgomery Multiplication in $GF(2^{k})$ ,” Designs, Codes, and Cryptography, vol. 14, pp. 5769, 1998.
[8] E.D. Mastrovito, “VLSI Architectures for Multiplication over Finite Field $GF(2^{m})$ ,” Applied Algebra, Algebraic Algorithms, and ErrorCorrecting Codes, T.Mora, ed., pp. 297309, SpringerVerlag, 1988.
[9] A. ReyhaniMasoleh and M.A. Hasan, “Low Complexity Bit Parallel Architectures for Polynomial Basis Multiplication over $GF(2^{m})$ ,” IEEE Trans. Computers, vol. 53, no. 8, pp. 945959, Aug. 2004.
[10] S.O. Lee, S.W. Jung, C.H. Kim, J. Yoon, J. Koh, and D. Kim, “Design of Bit Parallel Multiplier with Lower Time Complexity,” Proc. Int'l Conf. Information and Comm. Security (ICICS 2003), pp. 127139, 2004.
[11] H. Fan and Y. Dai, “Fast Bit Parallel $GF(2^{m})$ Multiplier for All Trinomials,” IEEE Trans. Computers, vol. 54, no. 4, pp. 485490, Apr. 2005.
[12] A. Satoh and K. Takano, “A Scalable DualField Elliptic Curve Cryptographic Processor,” IEEE Trans. Computers, vol. 52, no. 4, pp. 449460, Apr. 2003.
[13] E. Savas, A.F. Tenca, and C.K. Koc, “A Scalable and Unified Multiplier Architecture for Finite Fields $GF(p)$ and $GF(2^{m})$ ,” Proc. Cryptographic Hardware and Embedded Systems (CHES 2000), C.K. Koc and C. Paar, eds., pp.277292, Aug. 2000.
[14] A.F. Tenca and C.K. Koc, “A Scalable Architecture for Modular Multiplication Based on Montgomery's Algorithm,” IEEE Trans. Computers, vol. 52, no. 9, pp. 12151221, Sept. 2003.
[15] R. Lidl and H. Niederreiter, Finite Fields. AddisonWesley, 1983.
[16] B.S. Kaliski Jr. and Y.L. Yin, “StorageEfficient Finite Field Basis Conversion,” Selected Areas in Cryptography, S. Tavares and H. Meijer, eds., pp. 8193, SpringerVerlag, 1998.
[17] S.E. Eldridge and C.D. Walter, “Hardware Implementation of Montgomery's Modular Multiplication Algorithm,” IEEE Trans. Computers, vol. 42, no. 6, pp. 693699, June 1993.
[18] S.R. Dusse and B.S. Kaliski Jr., “A Cryptographic Library for the Motorola DSP56000,” Advances in Cryptology, Proc. EUROCRYPT, I.B. Damgard, ed., pp. 230244, 1990.