
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Pradeep Kumar Mishra, "Pipelined Computation of Scalar Multiplication in Elliptic Curve Cryptosystems (Extended Version)," IEEE Transactions on Computers, vol. 55, no. 8, pp. 10001010, August, 2006.  
BibTex  x  
@article{ 10.1109/TC.2006.129, author = {Pradeep Kumar Mishra}, title = {Pipelined Computation of Scalar Multiplication in Elliptic Curve Cryptosystems (Extended Version)}, journal ={IEEE Transactions on Computers}, volume = {55}, number = {8}, issn = {00189340}, year = {2006}, pages = {10001010}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2006.129}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Pipelined Computation of Scalar Multiplication in Elliptic Curve Cryptosystems (Extended Version) IS  8 SN  00189340 SP1000 EP1010 EPD  10001010 A1  Pradeep Kumar Mishra, PY  2006 KW  Elliptic Curve Cryptosystems KW  ECC KW  ECoperations KW  pipelining KW  scalar multiplication KW  comb methods KW  binary methods KW  Jacobian coordinates KW  sidechannel attacks KW  sidechannel atomicity. VL  55 JA  IEEE Transactions on Computers ER   
[1] K. Aoki, F. Hoshino, T. Kobayashi, and H. Oguro, “Elliptic Curve Arithmetic Using SIMD,” Proc. Int'l Symp. Computing (ISC 2001), pp. 235247, 2001.
[2] R.M. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen, and F. Vercauteren, Handbook of Elliptic and Hyperelliptic Curve Cryptography. CRC Press, 2005.
[3] E. Briér and M. Joye, “Weierstrass Elliptic Curves and SideChannel Attacks,” Proc. Int'l Workshop Practice and Theory in Public Key Cryptography (PKC 2002), pp. 335345, 2002.
[4] B. ChevallierMames, M. Ciet, and M. Joye, “LowCost Solutions for Preventing Simple SideChannel Analysis: Sidechannel Atomicity,” IEEE Trans. Computers, vol. 53, no. 6, pp. 760768, June 2004.
[5] M. Ciet, “Aspects of Fast and Secure Arithmetics for Elliptic Curve Cryptography,” PhD thesis, LouvainlaNeuve, Belgium, 2003.
[6] H. Cohen, “Analysis of the Window Powering Algorithm,” J. Cryptology, vol. 18, no. 1, pp. 6376, Jan. 2005.
[7] H. Cohen, A. Miyaji, and T. Ono, “Efficient Elliptic Curve Exponentiation Using Mixed Coordinates,” Proc. ASIACRYPT '98, pp. 5165, 1998.
[8] J.S. Coron, “Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems,” Proc. Workshop Cryptography Hardware and Embedded Systems (CHES 1999), pp. 292302, 1999.
[9] W. Fischer, C. Giraud, E.W. Knudsen, J.P. Seifert, “Parallel Scalar Multiplication on General Elliptic Curves over ${\bf F}_p$ Hedged against NonDifferential SideChannel Attacks,” IACR eprint archive, Technical Report No 2002/007, http:/www.iacr.org, 2002.
[10] K. Fong, D. Hankerson, J. López, and A. Menezes, “Field Inversion and Point Halving Revisited,” IEEE Trans. Computers, vol. 53, no. 8, pp. 10471059, Aug. 2004.
[11] D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curve Cryptography. SpringerVerlag, 2004.
[12] IEEE P1363 Standard Specification for Public Key Cryptography, Section A10.3 Elliptic Curve Scalar Multiplication, http://grouper.ieee.org/groups/1363index.html , 2000.
[13] T. Izu, B. Möller, and T. Takagi, “Improved Elliptic Curve Multiplication Methods Resistant against Side Channel Attacks,” Proc. Indocrypt 2002, pp. 296313, 2002.
[14] T. Izu and T. Takagi, “Fast Elliptic Curve Multiplications with SIMD Operation,” Proc. Int'l Conf. Information and Comm. Security (ICICS 2002), pp. 217230, 2002.
[15] M. Joye and C. Tymen, “Protection against Differential Attacks for Elliptic Curve Cryptography,” Proc. CHES 2001, pp. 402410, 2001.
[16] N. Koblitz, “Elliptic Curve Cryptosystems,” Math. of Computations, vol. 48, pp. 203209, 1987.
[17] P. Kocher, “Timing Attacks on Implementations of DiffieHellman, RSA, DSS and Other Systems,” Proc. CRYPTO '96, pp. 104113, 1996.
[18] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” Proc. CRYPTO '99, pp. 388397, 1999.
[19] K. Koyama and Y. Tsuruoka, “Speeding Up Elliptic Curve Cryptosystems Using a Signed Binary Windows Method,” Proc. CRYPTO '92, pp. 345357, 1992.
[20] C.H. Lim and P.J. Lee, “More Flexible Exponentiation with Precomputations,” Proc. CRYPTO 94, pp. 95107, 1994.
[21] V.S. Miller, “Use of Elliptic Curves in Cryptography,” Proc. CRYPTO '85, pp. 417426, 1985.
[22] P.K. Mishra, “Pipelined Computation of Scalar Multiplication in Use of Elliptic Curves Cryptosystems,” Proc. CHES '04, pp. 328342, 2004.
[23] J. Solinas, “Efficient Arithmetic on Koblitz Curves,” Designs, Codes, and Cryptography, vol. 19, pp. 195249, 2000.