
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
SunYuan Hsieh, NaiWen Chang, "Hamiltonian Path Embedding and Pancyclicity on the Möbius Cube with Faulty Nodes and Faulty Edges," IEEE Transactions on Computers, vol. 55, no. 7, pp. 854863, July, 2006.  
BibTex  x  
@article{ 10.1109/TC.2006.104, author = {SunYuan Hsieh and NaiWen Chang}, title = {Hamiltonian Path Embedding and Pancyclicity on the Möbius Cube with Faulty Nodes and Faulty Edges}, journal ={IEEE Transactions on Computers}, volume = {55}, number = {7}, issn = {00189340}, year = {2006}, pages = {854863}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2006.104}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Hamiltonian Path Embedding and Pancyclicity on the Möbius Cube with Faulty Nodes and Faulty Edges IS  7 SN  00189340 SP854 EP863 EPD  854863 A1  SunYuan Hsieh, A1  NaiWen Chang, PY  2006 KW  Graphtheoretic interconnection networks KW  Möbius cubes KW  faulttolerant embedding KW  pancyclicity KW  Hamiltonian. VL  55 JA  IEEE Transactions on Computers ER   
[1] “Interconnection Networks,” Discrete Applied Math., J.C. Bermond, ed., vols. 37+38, 1992.
[2] P. Cull and S.M. Larson, “The Möbius Cubes,” IEEE Trans. Computers, vol. 44, no. 5, pp. 647659, May 1995.
[3] J. Fan, “Diagnosability of the Möbius Cubes,” IEEE Trans. Parallel and Distributed Systems, vol. 9, no. 9, pp. 923928, Sept. 1998.
[4] J. Fan, “HamiltonianConnectivity and CycleEmbedding of the Möbius Cubes,” Information Processing Letters, vol. 82, pp. 113117, 2002.
[5] J.S. Fu and G.H. Chen, “Hamiltonicity of the Hierarchical Cubic Network,” Theory of Computing Systems, vol. 35, pp. 5979, 2002.
[6] J.S. Fu, “FaultTolerant Cycle Embedding in the Hypercube,” Parallel Computing, vol. 29, pp. 821832, 2003.
[7] F. Harary, Graph Theory. AddisonWesley, 1972.
[8] S.Y. Hsieh and C.H. Chen, “Pancyclicity on Möbius Cubes with Maximal Edge Faults,” Parallel Computing, vol. 30, pp. 407421, 2004.
[9] D.F. Hsu, “Interconnection Networks and Algorithms,” Networks, vol. 23, no. 4, 1993.
[10] W. Huang, Y. Chuang, J.J.M. Tan, and L. Hsu, “FaultFree Hamiltonian Cycles in Faulty Möbius Cubes,” Computación y Systemas, vol. 4, no. 2, pp. 106114, 2000.
[11] W.T. Huang, W.K. Chen, and C.H. Chen, “Pancyclicity of Möbius Cubes,” Proc. Ninth Int'l Conf. Parallel and Distributed Systems (ICPADS '02), pp. 591596, 2002.
[12] A. Kanevsky and C. Feng, “On the Embedding of Cycles in Pancake Graphs,” Parallel Computing, vol. 21, pp. 923936, 1995.
[13] H.C. Keh and J.C. Lin, “On FaultTolerant Embedding of Hamiltonian Cycles, Linear Arrays and Rings in a Flexible Hypercube,” Parallel Computing, vol. 26, pp. 769781, 2000.
[14] H. SarbaziAzad, M. OuldKhaoua, and L.M. Mackenzie, “Algorithmic Construction of Hamiltonian in Pyramids,” Information Processing Letters, vol. 80, no. 2, pp. 7579, 2001.
[15] Y.C. Tseng, S.H. Chang, and J.P. Sheu, “FaultTolerant Ring Embedding in Star Graphs with Both Link and Node Failures,” IEEE Trans. Parallel and Distributed Systems, vol. 8, no. 12, pp. 11851195, Dec. 1997.
[16] G. Tel, Topics in Distributed Algorithms. Cambridge Int'l Series on Parallel Computation, Cambridge Univ. Press, 1991.