This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
New Efficient MDS Array Codes for RAID Part I: Reed-Solomon-Like Codes for Tolerating Three Disk Failures
September 2005 (vol. 54 no. 9)
pp. 1071-1080
This paper presents a class of binary Maximum Distance Separable (MDS) array codes for tolerating disk failures in Redundant Arrays of Inexpensive Disks (RAID) architecture based on circular permutation matrices. The size of the information part is m \times n, the size of the parity-check part is m \times 3, and the minimum distance is 4, where n is the number of information disks, the number of parity-check disks is 3, and (m+1) is a prime integer. In practical applications, m can be very large and n is from 20 to 50. The code rate is R = {\frac{n}{n+3}}. These codes can be used for tolerating three disk failures. The encoding and decoding of the Reed-Solomon-like codes are very fast. There need to be 3mn XOR operations for encoding and (3mn+9(m+1)) XOR operations for decoding.

[1] D. Patterson, G. Gibson, and R. Katz, “A Case for Redundant Arrays of Inexpensive Disks (RAID),” Proc. ACM SIGMOD '88, pp. 109-116, June 1988.
[2] P. Elias, “Coding for Two Noisy Channels,” Proc. Third London Symp. Information Theory, pp. 61-76, Sept. 1955.
[3] M. Blahut, Algebraic Codes for Data Transmission. Cambridge Univ. Press, 2003.
[4] M. Blaum, “A Class of Byte-Correcting Array Code,” IBM Research Report, RJ, 5652, 57151, May 1987.
[5] M. Blaum, J. Bradt, J. Bruck, and J. Menon, “EVEN-ODD: An Efficient Scheme for Toleranting Double Disk Failures in RAID Architectures,” IEEE Trans. Computers, vol. 44, no. 2, pp. 192-202, Feb. 1995.
[6] M. Blaum, J. Bruck, and A. Vardy, “MDS Array Codes with Independent Parity Symbols,” IEEE Trans. Information Theory, pp. 529-542, Mar. 1996.
[7] M. Blaum, H. Hao, R. Mattson, and J. Menon, “A Coding Technique for Double Disk Failures in Disk Arrays,” US Patent 5,271,012, Dec. 1993.
[8] M. Blaum and R. Roth, “New Array Codes for Multiple Phased Burst Correction,” IEEE Trans. Information Theory, pp. 66-77, Jan. 1993.
[9] M. Blaum and R. Roth, “On Lowest-Density MDS Codes,” IEEE Trans. Information Theory, pp. 46-59, Jan. 1999.
[10] T. Fuja, C. Heegard, and M. Blaum, “Cross Parity Check Convolutional Code,” IEEE Trans. Information Theory, pp. 1264-1276, July 1989.
[11] R. Goodman, R.J. McEliece, and M. Sayano, “Phased Burst Correcting Array Codes,” IEEE Trans. Information Theory, pp. 684-693, Mar. 1993.
[12] L. Xu and J. Bruck, “X-Code: MDS Array Codes with Optimal Encoding,” IEEE Trans. Information Theory, pp. 272-276, Jan. 1999.
[13] L. Xu, V. Bohossian, J. Bruck, and D.G. Wagner, “Low-Density MDS Codes and Factors of Complete Graphs,” IEEE Trans. Information Theory, pp. 1817-1826, Sept. 1999.
[14] M. Blaum, J. Bradt, J. Bruck, J. Menon, and A. Vardy, “The EVENODD Code and Its Generalization: An Efficient Scheme for Tolerating Multiple Disk Failures in RAID Architectures,” High Performance Mass Storage and Parallel I/O, chapter 14, 2002.
[15] F.J. MacWilliams and N.J. A. Sloane, The Theory of Error-Correcting Codes. Elsevier Science Publishers B.V., 1977.

Index Terms:
Index Terms- Low-density-parity-check codes, MDS array codes, RAID, multiple disk failures, Reed-Solomon codes.
Citation:
Gui-Liang Feng, Robert H. Deng, Feng Bao, Jia-Chen Shen, "New Efficient MDS Array Codes for RAID Part I: Reed-Solomon-Like Codes for Tolerating Three Disk Failures," IEEE Transactions on Computers, vol. 54, no. 9, pp. 1071-1080, Sept. 2005, doi:10.1109/TC.2005.150
Usage of this product signifies your acceptance of the Terms of Use.