
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Berk Sunar, "An Efficient Basis Conversion Algorithm for Composite Fields with Given Representations," IEEE Transactions on Computers, vol. 54, no. 8, pp. 992997, August, 2005.  
BibTex  x  
@article{ 10.1109/TC.2005.124, author = {Berk Sunar}, title = {An Efficient Basis Conversion Algorithm for Composite Fields with Given Representations}, journal ={IEEE Transactions on Computers}, volume = {54}, number = {8}, issn = {00189340}, year = {2005}, pages = {992997}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2005.124}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  An Efficient Basis Conversion Algorithm for Composite Fields with Given Representations IS  8 SN  00189340 SP992 EP997 EPD  992997 A1  Berk Sunar, PY  2005 KW  Index Terms Finite fields KW  change of basis KW  composite fields KW  polynomial factorization. VL  54 JA  IEEE Transactions on Computers ER   
[1] C. Paar, “Efficient VLSI Architectures for BitParallel Computation in Galois Fields,” PhD thesis, English translation, Inst. for Experimental Math., Univ. of Essen, Essen, Germany, June 1994.
[2] R. Schroeppel, H. Orman, S. O'Malley, and O. Spatscheck, “Fast Key Exchange with Elliptic Curve Systems,” Advances in Cryptology (CRYPTO '95), D. Coppersmith, ed., pp. 4356, 1995.
[3] J. Fan and C. Paar, “On Efficient Inversion in Tower Fields of Characteristic Two,” Proc. 1997 IEEE Int'l Symp. Information Theory, p. 20, 1997.
[4] IEEE P1363 Standard Specifications for Public Key Cryptography, 2000.
[5] B.S. Kaliski Jr. and Y.L. Yin, “StorageEfficient Finite Field Basis Conversion,” Proc. Selected Areas in Cryptography '98, S. Tavares and H. Meijer, eds., pp. 8193, 1999.
[6] B. Kaliski Jr. and M. Liskov, “Efficient Finite Field Basis Conversion Involving Dual Bases,” Proc. Workshop Cryptographic Hardware and Embedded Systems (CHES 1999), Ç. Koç and C. Paar, eds., pp. 135143, Aug. 1999.
[7] M. BenOr, “Probabilistic Algorithms in Finite Fields,” Proc. 22nd Ann. IEEE Symp. Foundations of Computer Science, pp. 394398, 1981.
[8] J. von zur Gathen and V. Shoup, “Computing Frobenius Maps and Factoring Polynomials,” Computational Complexity, vol. 2, pp. 187224, 1992.
[9] E. Kaltofen and V. Shoup, “Fast Polynomial Factorization over High Algebraic Extensions of Finite Fields,” Proc. Int'l Symp. Symbolic and Algebraic Computation, 1997.
[10] A.J. Menezes, I.F. Blake, X. Gao, R.C. Mullen, S.A. Vanstone, and T. Yaghoobian, Applications of Finite Fields. Kluwer Academic, 1993.
[11] B. Sunar, E. Savaş, and Ç.K. Koç, “Constructing Composite Field Representations for Efficient Conversion,” IEEE Trans. Computers, vol. 52, no. 11, pp. 13911398, Nov. 2003.
[12] D.G. Cantor and H. Zassenhaus, “A New Algorithm for Factoring Polynomials over Finite Fields,” Math. Computation, vol. 36, pp. 587592, 1981.
[13] E. Kaltofen, “Polynomial Factorization 19821986,” Computers in Math., Lecture Notes in Pure and Applied Math., D. Chudnovsky and R. Jenks, eds., vol. 125, pp. 285309, New York: Marcel Dekker, 1990.
[14] E. Kaltofen, “Polynomial Factorization 19871991,” Proc. LATIN '92, I. Simon, ed., pp. 294313, 1992.
[15] A. Karatsuba and Y. Ofman, “Multiplication of Multidigit Numbers on Automata,” Soviet Physiks Doklady (English translation), vol. 7, no. 7, pp. 595596, 1963.
[16] R.P. Brent and H.T. Kung, “Fast Algorithms for Manipulating Formal Power Series,” J. ACM, vol. 4, no. 25, pp. 581595, 1978.
[17] X. Huang and V.Y. Pan, “Fast Rectangular Matrix Multiplication and Applications,” J. Complexity, vol. 14, pp. 257299, June 1998.