This Article 
 Bibliographic References 
 Add to: 
Efficient Diminished-1 Modulo 2^n+1 Multipliers
April 2005 (vol. 54 no. 4)
pp. 491-496
In this work, we propose a new algorithm for designing diminished-1 modulo 2^n+1 multipliers. The implementation of the proposed algorithm requires n+3 partial products that are reduced by a tree architecture into two summands, which are finally added by a diminished-1 modulo 2^n+1 adder. The proposed multipliers, compared to existing implementations, offer enhanced operation speed and their regular structure allows efficient VLSI implementations.

[1] F. Taylor, “A Single Modulus ALU for Signal Processing,” IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 33, pp. 1302-1315, 1985.
[2] E. DiClaudio et al., “Fast Combinatorial RNS Processors for DSP Applications,” IEEE Trans. Computers, vol. 44, pp. 624-633, 1995.
[3] J. Ramirez et al., “RNS-Enabled Digital Signal Processor Design,” IEE Electronics Letters, vol. 38, no. 6, pp. 266-268, 2002.
[4] R. Chaves and L. Sousa, “RDSP: A RISC DSP Based on Residue Number System,” Proc. Euromicro Symp. Digital Systems Design, pp. 128-135, Sept. 2003.
[5] L.M. Leibowitz, “A Simplified Binary Arithmetic for the Fermat Number Transform,” IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 24, pp. 356-359, 1976.
[6] T.K. Truong et al., “Techniques for Computing the Discrete Fourier Transform Using the Quadratic Residue Fermat Number Systems,” IEEE Trans. Computers, vol. 35, pp. 1008-1012, 1986.
[7] M. Benaissa et al., “Diminished-1 Multiplier for a Fast Convolver and Correlator Using the Fermat Number Transform,” IEE Proc. G, vol. 135, pp. 187-193, 1988.
[8] S. Sunder at al., “Area-Efficient Diminished-1 Multiplier for Fermat Number-Theoretic Transform,” IEE Proc. G, vol. 140, pp. 211-215, 1993.
[9] R. Zimmermann et al., “A 177 Mb/s VLSI Implementation of the International Data Encryption Algorithm,” IEEE J. Solid-State Circuits, vol. 29, no. 3, pp. 303-307, 1994.
[10] R. Zimmerman, “Efficient VLSI Implementation of Modulo $(2^n\pm 1)$ Addition and Multiplication,” Proc. IEEE Symp. Computer Arithmetic, pp. 158-167, Apr. 1999.
[11] C. Efstathiou et al., “Modulo $2^{n}\pm1$ Adder Design Using Select-Prefix Blocks,” IEEE Trans. Computers, vol. 52, pp. 1399-1406, 2003.
[12] H.T. Vergos, C. Efstathiou, and D. Nikolos, “Diminished-One Modulo $2^n+1$ Adder Design,” IEEE Trans. Computers, vol. 51, pp. 1389-1399, 2002.
[13] S.J. Piestrak, “Design of Residue Generators and Multioperand Modular Adders Using Carry-Save Adders,” IEEE Trans. Computers, vol. 43, pp. 68-77, 1994.
[14] A.A. Hiasat, “A Memoryless $\bmod (2^n\pm1)$ Residue Multiplier,” Electronics Letters, vol. 28, no. 3, pp. 314-315, 1992.
[15] A. Wrzyszcz and D. Milford, “A New Modulo $2^a+1$ Multiplier,” Proc. Int'l Conf. Computer Design, pp. 614-617, 1993.
[16] Z. Wang, G.A. Jullien, and W.C. Miller, “An Efficient Tree Architecture for Modulo $2^n+1$ Multiplication,” J. VLSI Signal Processing, vol. 14, pp. 241-248, 1996.
[17] Y. Ma, “A Simplified Architecture for Modulo $(2^n+1)$ Multiplication,” IEEE Trans. Computers, vol. 47, no. 3, pp. 333-337, Mar. 1998.
[18] A.V. Curiger et al., “Regular VLSI Architectures for Multiplication Modulo ($2^n+1$ ),” IEEE J. Solid-State Circuits, vol. 26, no. 7, pp. 990-994, 1991.
[19] V. Paliouras, A. Skavantzos, and T. Stouraitis, “Multi-Voltage Low Power Convolvers Using the Polynomial Residue Number System,” Proc. ACM Great Lakes Symp. VLSI, pp. 7-11, 2002.
[20] A. Hammalainen, M. Tommiska, and J. Skytta, “6.78 Gigabits per Second Implementation of the IDEA Cryptographic Algorithm,” Lecture Notes in Computer Science, vol. 2438, pp. 760-769, 2002.
[21] L. Dadda, “Some Schemes for Parallel Multipliers,” Alta Frequenza, vol. 34, pp. 349-356, 1965.
[22] A. Tyagi, “A Reduced-Area Scheme for Carry-Select Adders,” IEEE Trans. Computers, vol. 42, no. 10, pp. 1163-1170, Oct. 1993.
[23] E.E. Swartzlander, “Parallel Counters,” IEEE Trans. Computers, vol. 22, pp. 1021-1024, 1973.

Index Terms:
Modulo 2^n+1 multipliers, computer arithmetic, residue number system, Fermat number transform, VLSI design.
Costas Efstathiou, Haridimos T. Vergos, Giorgos Dimitrakopoulos, Dimitris Nikolos, "Efficient Diminished-1 Modulo 2^n+1 Multipliers," IEEE Transactions on Computers, vol. 54, no. 4, pp. 491-496, April 2005, doi:10.1109/TC.2005.63
Usage of this product signifies your acceptance of the Terms of Use.