
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Markus Volkmer, Sebastian Wallner, "Tree Parity Machine Rekeying Architectures," IEEE Transactions on Computers, vol. 54, no. 4, pp. 421427, April, 2005.  
BibTex  x  
@article{ 10.1109/TC.2005.70, author = {Markus Volkmer and Sebastian Wallner}, title = {Tree Parity Machine Rekeying Architectures}, journal ={IEEE Transactions on Computers}, volume = {54}, number = {4}, issn = {00189340}, year = {2005}, pages = {421427}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2005.70}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Tree Parity Machine Rekeying Architectures IS  4 SN  00189340 SP421 EP427 EPD  421427 A1  Markus Volkmer, A1  Sebastian Wallner, PY  2005 KW  Security KW  authentication KW  algorithms implemented in hardware KW  ubiquitous computing KW  pervasive computing. VL  54 JA  IEEE Transactions on Computers ER   
[1] R. Anderson, “Protecting Embedded Systems— The Next Ten Years (Invited Talk),” Proc. Third Int'l Workshop Cryptographic Hardware and Embedded Systems (CHES 2001), pp. 12, May 2001.
[2] C. Paar, “Eingebettete Sicherheit im Automobil. ESCAR— Embedded ITSecurity in Cars, Cologne, Germany,” 1819 Nov. 2003.
[3] E. Bovelander, “Smart Card Security,” State of the Art in Applied Cryptography— Course on Computer Security and Industrial Cryptography (Revised Lectures), B. Preneel and V. Rijmen, eds., Springer Verlag, June 1997.
[4] K. Vedder and F. Weikmann, “Smart Cards— Requirements, Properties, and Applications,” State of the Art in Applied Cryptography— Course on Computer Security and Industrial Cryptography (Revised Lectures), pp. 307331, Springer Verlag, June 1997.
[5] T. Wollinger, J. Guajardo, and C. Paar, “Cryptography in Embedded Systems: An Overview (Invited Paper),” Proc. Embedded World 2003 Exhibition and Conf., pp. 735744, Feb. 2003.
[6] F. Stajano, “Security in Pervasive Computing (Invited Talk),” Proc. First Int'l Conf. Security in Pervasive Computing (SPC 2003), p. 1, 2003.
[7] A. Kerckhoffs, “La Cryptographie Militaire,” J. des Sciences Militaries, vol. IX, pp. 538, Jan. 1883, pp. 161191, Feb. 1883.
[8] A. Huang, “Keeping Secrets in Hardware: The Microsoft XBOX™ Case Study,” Proc. Workshop Cryptographic Hardware and Embedded Systems 2002 (CHES 2002), pp. 213227, Aug. 2003.
[9] W. Diffie and M.E. Hellman, “New Directions in Cryptography,” IEEE Trans. Information Theory, vol. 22, no. 6, pp. 644654, Nov. 1976.
[10] T.E. Gamal, “A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms,” IEEE Trans. Information Theory, vol. 31, no. 4, pp. 469472, 1985.
[11] R. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital Signatures and Public Key Cryptosystems,” Comm. ACM, vol. 21, no. 2, pp. 120126, Feb. 1978.
[12] Rhode & Schwarz, TopSec GSM, Data Sheet PD0757.6904.21, Aug. 2001.
[13] J. Pelzl, T. Wollinger, and C. Paar, “Low Cost Security: Explicit Formulae for Genus4 Hyperelliptic Curves,” Proc. 10th Ann. Workshop Selected Areas in Cryptography (SAC 2003), 2003.
[14] I. Kanter, W. Kinzel, and E. Kanter, “Secure Exchange of Information by Synchronization of Neural Networks,” Europhysics Letters, vol. 57, no. 1, pp. 141147, 2002.
[15] R. Metzler, W. Kinzel, and I. Kanter, “Interacting Neural Networks,” Physics Rev. E, vol. 62, no. 2, pp. 25552565, 2000.
[16] W. Kinzel and I. Kanter, “Interacting Neural Networks and Cryptography,” Advances in Solid State Physics, B. Kramer, ed., Springer Verlag, 2002.
[17] “Theory of Interacting Neural Networks,” Handbook of Graphs and Networks, S. Bornholdt and H. Schuster, eds., Wiley VCH, 2003.
[18] U. Maurer, “Secret Key Agreement by Public Discussion,” IEEE Trans. Information Theory, vol. 39, no. 3, pp. 733742, 1993.
[19] A. Klimov, A. Mityagin, and A. Shamir, “Analysis of Neural Cryptography,” Proc. AsiaCrypt 2002, pp. 288298, 2002.
[20] R. Mislovaty, Y. Perchenok, I. Kanter, and W. Kinzel, “Secure KeyExchange Protocol with an Absence of Injective Functions,” Physics Rev. E, vol. 66, no. 066102, 2002.
[21] M. RosenZvi, E. Klein, I. Kanter, and W. Kinzel, “Mutual Learning in a Tree Parity Machine and Its Application to Cryptography,” Physics Rev. E., vol. 66, no. 066135, 2002.
[22] I. Kanter and W. Kinzel, “Neural Cryptography,” Proc. Ninth Int'l Conf. Neural Information Processing, 2002.
[23] L.N. Shacham, E. Klein, R. Mislovaty, I. Kanter, and W. Kinzel, “Cooperating Attackers in Neural Cryptography,” Dec. 2003, preprint www.arxiv.org/condmat0312068.
[24] M. Abdalla and M. Bellare, “Increasing the Lifetime of a Key: A Comparative Analysis of the Security of Rekeying Techniques,” Advances in Cryptology— Asiacrypt 2000 Proc., T. Okamoto, ed., 2000.
[25] W. Rankl and W. Effing, Smart Card Handbook. Wiley & Sons Ltd., 2000.
[26] M. RosenZvi, I. Kanter, and W. Kinzel, “Cryptography Based on Neural Networks— Analytical Results,” J. Physics A: Math. Gen., vol. 35, no. 47, pp. L707L713, 2002.
[27] A. Ruttor and W. Kinzel, “Repulsive Feedback Mechanisms in Neural Cryptography,” 2003.
[28] R. Mislovaty, E. Klein, I. Kanter, and W. Kinzel, “Public Channel Cryptography by Synchronization of Neural Networks and Chaotic Maps,” Physics Rev. Letters, vol. 91, no. 118701, 2003.
[29] A. Ruttor, W. Kinzel, L. Shacham, and I. Kanter, “Neural Cryptography with Feedback,” Physics Rev. E, vol. 69, 2004.