
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Tom? Lang, Elisardo Antelo, "HighThroughput CORDICBased Geometry Operations for 3D Computer Graphics," IEEE Transactions on Computers, vol. 54, no. 3, pp. 347361, March, 2005.  
BibTex  x  
@article{ 10.1109/TC.2005.53, author = {Tom? Lang and Elisardo Antelo}, title = {HighThroughput CORDICBased Geometry Operations for 3D Computer Graphics}, journal ={IEEE Transactions on Computers}, volume = {54}, number = {3}, issn = {00189340}, year = {2005}, pages = {347361}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2005.53}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  HighThroughput CORDICBased Geometry Operations for 3D Computer Graphics IS  3 SN  00189340 SP347 EP361 EPD  347361 A1  Tom? Lang, A1  Elisardo Antelo, PY  2005 KW  CORDIC KW  3D rotations KW  vector normalization KW  geometry transforms KW  graphics processor. VL  54 JA  IEEE Transactions on Computers ER   
[1] W.J. Dally, P. Hanrahan, M. Erez, and T.J. Knight, “Merrimac: Supercomputing with Streams,” Proc. Supercomputing Conf., Nov. 2003.
[2] M.D. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann, 2003.
[3] D.E. Eberly, 3D Game Engine Design. Morgan Kaufmann, 2000.
[4] J. Euh, J. Chittamuru, and W. Burleson, “CORDIC Vector Interpolator for PowerAware 3D Computer Graphics,” Proc. IEEE Workshop Signal Processing Systems (SIPS '02), 2002.
[5] H. Hahn, D. Timmermann, B.J. Hosticka, and B. Rix, “A Unified and DivisionFree CORDIC Argument Reduction Method with Unlimited Convergence Domain Including Inverse Hyperbolic Functions,” IEEE Trans. Computers, vol. 43, no. 11, pp. 13391344, Nov. 1994.
[6] W. Heidrich and H.P. Seidel, “Efficient Rendering of Anisotropic Surfaces Using Computer Graphics Hardware,” Proc. Image and MultiDimensional Digital Signal Processing Workshop, 1998.
[7] G.J. Hekstra and E.F. Deprettere, “Floating Point CORDIC,” Proc. 11th IEEE Symp. Computer Arithmetic, pp. 130137, 1993.
[8] S.F. Hsiao and J.M. Delosme, “Householder CORDIC Algorithm,” IEEE Trans. Computers, vol. 44, no. 8, pp. 9901001, Aug. 1995.
[9] N. Ide et al., “2.44GFLOPS 300MHz FloatingPoint VectorProcessing Unit for HighPerformance 3D Computer Graphics Computing,” IEEE J. SolidState Circuits, vol. 35, no. 7, pp. 10251033, July 2000.
[10] U.J. Kapasi et al., “Programmable Stream Processors,” Computer, vol. 36, no. 8, pp. 5462, Aug. 2003.
[11] T. Lang and E. Antelo, “HighThroughput 3D Rotations and Normalizations,” Proc. 35th Asilomar Conf. Signals, Systems, and Computers, Nov. 2001.
[12] E. Lindholm et al., “A UserProgrammable Vertex Engine,” Proc. ACM SIGGRAPH 2001, pp. 149158, 2001.
[13] O. Mencer, L. Semeria, M. Morf, and J.M. Delosme, “Application of Reconfigurable CORDIC Architectures,” J. VLSI Signal Processing, vol. 24, nos. 23, pp. 211221, 2000.
[14] T. Moller and E. Haines, RealTime Rendering, second ed. A.K. Peters Ltd., 2002.
[15] J.M. Muller, Elementary Functions: Algorithms and Implementations. Birkhauser, 1997.
[16] T. Nakayama et al., “A 6.7MFLOPS FloatingPoint Coprocessor with Vector/Matrix Instructions,” IEEE J. SolidState Circuits, vol. 24, no. 5, pp. 13241330, 1989.
[17] J.A. Piñeiro et al., “Faithful Powering Computation Using Table LookUp and a Fused Accumulation Tree,” Proc. 15th IEEE Symp. Computer Arithmetic, pp. 4047, 2001.
[18] P.J. Schneider and D.H. Eberly, Geometric Tools for Computer Graphics. Morgan Kaufmann, 2003.
[19] K. Shoemake, “Animating Rotation with Quaternion Calculus,” ACM SIGGRAPH Course Notes 10: Computer Animation: 3D Motion, Specification, and Control, 1987.
[20] D. Timmermann, B. Rix, H. Hahn, and B.J. Hosticka, “A CMOS FloatingPoint VectorArithmetic Unit,” IEEE J. SolidState Circuits, vol. 29, no. 5, 1994.
[21] H. Yoshimura, T. Nakanishi, and H. Ymauchi, “A 50MHz CMOS Geometrical Mapping Processor,” IEEE Trans. Circuits and Systems, vol. 36, no. 10, pp. 13601363, 1989.