
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
JoseAlejandro Pi?eiro, Stuart F. Oberman, JeanMichel Muller, Javier D. Bruguera, "HighSpeed Function Approximation Using a Minimax Quadratic Interpolator," IEEE Transactions on Computers, vol. 54, no. 3, pp. 304318, March, 2005.  
BibTex  x  
@article{ 10.1109/TC.2005.52, author = {JoseAlejandro Pi?eiro and Stuart F. Oberman and JeanMichel Muller and Javier D. Bruguera}, title = {HighSpeed Function Approximation Using a Minimax Quadratic Interpolator}, journal ={IEEE Transactions on Computers}, volume = {54}, number = {3}, issn = {00189340}, year = {2005}, pages = {304318}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2005.52}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  HighSpeed Function Approximation Using a Minimax Quadratic Interpolator IS  3 SN  00189340 SP304 EP318 EPD  304318 A1  JoseAlejandro Pi?eiro, A1  Stuart F. Oberman, A1  JeanMichel Muller, A1  Javier D. Bruguera, PY  2005 KW  Tablebased methods KW  reciprocal KW  square root KW  elementary functions KW  minimax polynomial approximation KW  singleprecision computations KW  computer arithmetic. VL  54 JA  IEEE Transactions on Computers ER   
[1] J. Cao and B. Wei, “HighPerformance Hardware for Function Generation,” Proc. 13th Int'l Symp. Computer Arithmetic (ARITH13), pp. 184188, 1997.
[2] J. Cao, B. Wei, and J. Cheng, “HighPerformance Architectures for Elementary Function Generation,” Proc. 15th Int'l Symp. Computer Arithmetic (ARITH15), pp. 136144, 2001.
[3] T.C. Chen, “A Binary Multiplication Scheme Based on Squaring,” IEEE Trans. Computers, vol. 20, pp. 678680, 1971.
[4] W. Cody and W. Waite, Software Manual for the Elementary Functions. PrenticeHall, 1980.
[5] D. DasSarma and D.W. Matula, “Faithful Interpolation in Reciprocal Tables,” Proc. 13th Symp. Computer Arithmetic (ARITH13), pp. 8291, 1997.
[6] D. DasSarma and D.W. Matula, “Faithful Bipartite ROM Reciprocal Tables,” IEEE Trans. Computers, vol. 47, no. 11, pp. 12161222, Nov. 1998.
[7] K. Diefendorff, P.K. Dubey, R. Hochprung, and H. Scales, “Altivec Extension to PowerPC Accelerates Media Processing,” IEEE Micro, pp. 8595, Mar./Apr. 2000.
[8] M.D. Ercegovac and T. Lang, “OnLine Arithmetic: A Design Methodology and Applications,” VLSI Signal Processing, III, chapter 24, IEEE Press, 1988.
[9] M.D. Ercegovac and T. Lang, Division and Square Root: Digit Recurrence Algorithms and Implementations. Kluwer Academic, 1994.
[10] M.J. Flynn, “On Division by Functional Iteration,” IEEE Trans. Computers, vol. 19, pp. 702706, 1970.
[11] J. Foley, A. vanDam, S. Feiner, and J. Hughes, Computer Graphics: Principles and Practice in C, second ed. AddisonWesley, 1995.
[12] D. Harris, “A Powering Unit for an OpenGL Lighting Engine,” Proc. 35th Asilomar Conf. Signals, Systems, and Computers, pp. 16411645, 2001.
[13] J.F. Hart, E.W. Cheney, C.L. Lawson, H.J. Maehly, C.K. Mesztenyi, J.R. Rice, H.G. Thacher, and C. Witzgall, Computer Approximations. New York: Wiley, 1968.
[14] N. Ide et al. (Sony Playstation2), “2. 44GFLOPS 300MHz FloatingPoint VectorProcessing Unit for HighPerformance 3D Graphics Computing,” IEEE J. SolidState Circuits, vol. 35, no. 7, pp. 10251033, July 2000.
[15] V.K. Jain, S.A. Wadecar, and L. Lin, “A Universal Nonlinear Component and Its Application to WSI,” IEEE Trans. Components, Hybrids, and Manufacturing Technology, vol. 16, no. 7, pp. 656664, 1993.
[16] T. Jayarshee and D. Basu, “On Binary Multiplication Using the Quarter Square Algorithm,” Proc. Spring Joint Computer Conf., pp. 957960, 1974.
[17] I. Koren, “Evaluating Elementary Functions in a Numerical Coprocessor Based on Rational Approximations,” IEEE Trans. Computers, vol. 40, pp. 10301037, 1990.
[18] A. Kunimatsu et al. (Sony Playstation2), “Vector Unit Architecture for Emotion Synthesis,” IEEE Micro, vol. 20, no. 2, pp. 4047, Mar./Apr. 2000.
[19] D.M. Lewis, “114 MFLOPS Logarithmic Number System Arithmetic Unit for DSP Applications,” IEEE J. SolidState Circuits, vol. 30, no. 12, pp. 15471553, 1995.
[20] P. Markstein, IA64 and Elementary Functions. HewlettPackard Professional Books, 2000.
[21] C. May, E. Silha, R. Simpson, and H. Warren, The PowerPC Architecture: A Specification for a New Family of RISC Processors. San Francisco: Morgan Kaufman, 1994.
[22] Microsoft Corp., Microsoft DirectX Technology Review, 2004, http://www.microsoft.com/windows/directx default.aspx.
[23] J.M. Muller, Elementary Functions. Algorithms and Implementation. Birkhauser, 1997.
[24] J.M. Muller, “A Few Results on TableBased Methods,” Reliable Computing, vol. 5, no. 3, 1999.
[25] J.M. Muller, “Partially Rounded SmallOrder Approximations for Accurate, HardwareOriented, TableBased Methods,” Proc. IEEE 16th Int'l Symp. Computer Arithmetic (ARITH16), pp. 114121, 2003.
[26] S. Oberman, G. Favor, and F. Weber, “AMD3DNow! Technology: Architecture and Implementations,” IEEE Micro, vol. 19, no. 2, pp. 3748, Mar./Apr. 1999.
[27] S.F. Oberman, “Floating Point Division and Square Root Algorithms and Implementation in the AMDK7 Microprocessor,” Proc. 14th Symp. Computer Arithmetic (ARITH14), pp. 106115, Apr. 1999.
[28] A.R. Omondi, Computer Arithmetic Systems. Algorithms, Architecture and Implementations. Prentice Hall, 1994.
[29] J.A. Piñeiro, “Algorithms and Architectures for Elementary Function Computation,” PhD dissertation, Univ. of Santiago de Compostela, 2003.
[30] J.A. Piñeiro and J.D. Bruguera, “HighSpeed DoublePrecision Computation of Reciprocal, Division, Square Root and Inverse Square Root,” IEEE Trans. Computers, vol. 51, no. 12, pp. 13771388, Dec. 2002.
[31] J.A. Piñeiro, J.D. Bruguera, and J.M. Muller, “Faithful Powering Computation Using Table LookUp and Fused Accumulation Tree,” Proc. IEEE 15th Int'l Symp. Computer Arithmetic, pp. 4047, 2001.
[32] J.A. Piñeiro, S. Oberman, J.M. Muller, and J.D. Bruguera, “HighSpeed Function Approximation Using a Minimax Quadratic Interpolator,” technical report, Univ. of Santiago de Compostela, Spain, June 2004, http://www.ac.usc.espublications.
[33] J.R. Rice, The Approximation of Functions. Reading, Mass.: Addison Wesley, 1964.
[34] M.J. Schulte and J.E. Stine, “Approximating Elementary Functions with Symmetric Bipartite Tables,” IEEE Trans. Computers, vol. 48, no. 8, pp. 842847, Aug. 1999.
[35] M.J. Schulte and J.E. Stine, “The Symmetric Table Addition Method for Accurate Function Approximation,” J. VLSI Signal Processing, vol. 21, no. 2, pp. 167177, 1999.
[36] M.J. Schulte and E.E. Swartzlander, “Hardware Designs for Exactly Rounded Elementary Functions,” IEEE Trans. Computers, vol. 43, no. 8, pp. 964973, Aug. 1994.
[37] M.J. Schulte and K.E. Wires, “HighSpeed Inverse Square Roots,” Proc. 14th Int'l Symp. Computer Arithmetic (ARITH14), pp. 124131, Apr. 1999.
[38] E.M. Schwarz and M.J. Flynn“Hardware, Starting Approximation for the Square Root Operation“ Proc. 11th Symp. Computer Arithmetic (ARITH11), pp. 103111, 1993.
[39] H.C. Shin, J.A. Lee, and L.S. Kim, “A Minimized Hardware Architecture of Fast Phong Shader Using Taylor Series Approximation in 3D Graphics,” Proc. Int'l Conf. Computer Design, VLSI in Computers and Processors, pp. 286291, 1998.
[40] N. Takagi, “Powering by a Table LookUp and a Multiplication with Operand Modification,” IEEE Trans. Computers, vol. 47, no. 11, pp. 12161222, Nov. 1998.
[41] P.T.P. Tang, “TableDriven Implementation of the Logarithm Function in IEEE FloatingPoint Arithmetic,” ACM Trans. Math. Software, vol. 4, no. 16, pp. 378400, Dec. 1990.
[42] P.T.P. Tang, “Table LookUp Algorithms for Elementary Functions and Their Error Analysis,” Proc. IEEE 10th Int'l Symp. Computer Arithmetic (ARITH10), pp. 232236, 1991.
[43] Waterloo Maple Inc., Maple 8 Programming Guide, 2002.