
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Peter Kornerup, "Digit Selection for SRT Division and Square Root," IEEE Transactions on Computers, vol. 54, no. 3, pp. 294303, March, 2005.  
BibTex  x  
@article{ 10.1109/TC.2005.47, author = {Peter Kornerup}, title = {Digit Selection for SRT Division and Square Root}, journal ={IEEE Transactions on Computers}, volume = {54}, number = {3}, issn = {00189340}, year = {2005}, pages = {294303}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2005.47}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Digit Selection for SRT Division and Square Root IS  3 SN  00189340 SP294 EP303 EPD  294303 A1  Peter Kornerup, PY  2005 KW  Digit selection KW  division KW  square root. VL  54 JA  IEEE Transactions on Computers ER   
[1] P. Kornerup, “Revisiting SRT Quotient Digit Selection,” Proc. 16th IEEE Symp. Computer Arithmetic, pp. 3845, June 2003.
[2] J. Robertson, “A New Class of Digital Division Methods,” IRE Trans. Electronic Computers, vol. 7, pp. 218222, 1958, reprinted in [16].
[3] K. Tocher, “Techniques of Multiplication and Division for Automatic Binary Computers,” Quarterly J. Mechanics and Applied Math., vol. 11, pp. 364384, 1958.
[4] D. Atkins, “HigherRadix Division Using Estimates of the Divisor and Partial Remainders,” IEEE Trans. Computers, vol. 17, pp. 925934, 1968, reprinted in [16].
[5] T. Coe and P. Tang, “It Takes Six Ones to Reach a Flaw,” Proc. 12th IEEE Symp. Computer Arithmetic, 1995.
[6] G. Taylor, “Radix 16 SRT Dividers with Overlapped Quotient Selection Stages,” Proc. Seventh IEEE Symp. Computer Arithmetic, pp. 6471, 1985.
[7] T. Williams and M. Horowitz, “SRT Division Diagrams and Their Usage in Designing Custom Integrated Circuits for Division,” Technical Report CSLTR87326, Stanford Univ., 1986.
[8] N. Burgess and T. Williams, “Choices of Operand Truncation in the SRT Division Algorithm,” IEEE Trans. Computers, vol. 44, no. 7, pp. 933938, July 1995.
[9] M. Ercegovac and T. Lang, Division and Square Root: DigitRecurrence Algorithms and Implementations. Kluwer Academic, 1994.
[10] S. Oberman and M. Flynn, “Minimizing the Complexity of SRT Tables,” IEEE Trans. VLSI Systems, vol. 6, no. 1, pp. 141149, Mar. 1998.
[11] B. Parhami, “Precision Requirements for Quotient Digit Selection in HighRadix Division,” Proc. 35th Asilomar Conf. Circuits, Systems, and Computers, pp. 16701673, 2001.
[12] L. Ciminiera and P. Montuschi, “Higher Radix Square Rooting,” IEEE Trans. Computers, vol. 39, no. 10, pp. 12201231, Oct. 1990.
[13] M. Ercegovac and T. Lang, “Radix4 Square Root without Initial PLA,” IEEE Trans. Computers, vol. 39, no. 9, pp. 10161024, Aug. 1990.
[14] M. Ercegovac and T. Lang, “OntheFly Conversion of Redundant into Conventional Representations,” IEEE Trans. Computers, vol. 36, no. 7, pp. 895897, July 1987, reprinted in [17].
[15] M. Daumas and D. Matula, “Further Reducing the Redundancy of Notation over a Minimally Redundant Digit Set,” J. VLSI Signal Processing, vol. 33, nos. 1/2, pp. 718, 2003.
[16] Computer Arithmetic, Vol I, E.E. Swartzlander, ed. Dowden, Hutchinson and Ross, Inc., 1980, reprinted by IEEE CS Press, 1990.
[17] Computer Arithmetic, Vol II, E.E. Swartzlander, ed. IEEE CS Press, 1990.