
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Sorin Cotofana, Casper Lageweg, Stamatis Vassiliadis, "Addition Related Arithmetic Operations via Controlled Transport of Charge," IEEE Transactions on Computers, vol. 54, no. 3, pp. 243256, March, 2005.  
BibTex  x  
@article{ 10.1109/TC.2005.40, author = {Sorin Cotofana and Casper Lageweg and Stamatis Vassiliadis}, title = {Addition Related Arithmetic Operations via Controlled Transport of Charge}, journal ={IEEE Transactions on Computers}, volume = {54}, number = {3}, issn = {00189340}, year = {2005}, pages = {243256}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2005.40}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Addition Related Arithmetic Operations via Controlled Transport of Charge IS  3 SN  00189340 SP243 EP256 EPD  243256 A1  Sorin Cotofana, A1  Casper Lageweg, A1  Stamatis Vassiliadis, PY  2005 KW  SET KW  single electron technology KW  electron counting KW  addition KW  multiplication. VL  54 JA  IEEE Transactions on Computers ER   
[1] Y. Taur, D. Buchanan, W. Chen, D. Frank, K. Ismail, S. Lo, G. SaiHalasz, R. Viswanathan, H. Wann, S. Wind, and H. Wong, “CMOS Scaling into the Nanometer Regime,” Proc. IEEE, vol. 85, no. 4, pp. 486504, 1997.
[2] “Technology Roadmap for Nanoelectronics,” http://www. cordis.lu/esprit/srcmelnarm.htm , 1999, published on the internet by the Microelectronics Advanced Research Initiative (MELARI NANO), a European Commission (EC) Information Soc. Technologies (IST) program on Future and Emerging Tech nologies.
[3] K. Likharev, “SingleElectron Devices and Their Applications,” Proc. IEEE, vol. 87, no. 4, pp. 606632, Apr. 1999.
[4] Y. Ono, Y. Takahashi, K. Yamazaki, M. Nagase, H. Namatsu, K. Kurihara, and K. Murase, “Fabrication Method for ICOriented Si SingleElectron Transistors,” IEEE Trans. Electron Devices, vol. 49, no. 3, pp. 193207, Mar. 2000.
[5] C. Wasshuber, “About SingleElectron Devices and Circuits,” PhD dissertation, TU Vienna, 1998.
[6] C. Heij and J.M.P. Hadley, “A SingleElectron Inverter,” Applied Physics Letters, vol. 78, no. 8, pp. 11401142, Feb. 2001.
[7] K. Ishibashi, D. Tsuya, M. Suzuki, and Y. Aoyagi, “Fabrication of a SingleElectron Inverter in Multiwall Carbon Nanotubes,” Applied Physics Letters, vol. 82, no. 19, pp. 33073309, Feb. 2001.
[8] D. Averin and A. Odintsov, “Macroscopic Quantum Tunneling of the Electric Charge in Small Tunnel Junctions,” Physics Letters A, vol. 140, no. 5, pp. 251257, Sept. 1989.
[9] D. Averin and Y. Nazarov, “Virtual Electron Diffusion during Quantum Tunneling of the Electric Charge,” Physical Rev. Letters, vol. 65, no. 19, pp. 24462449, Nov. 1990.
[10] S. Lotkhov, H. Zangerle, A. Zorin, and J. Niemeyer, “Storage Capabilities of a FourJunction SingleElectron Trap with an OnChip Resistor,” Applied Physics Letters, vol. 75, no. 17, pp. 26652667, Oct. 1999.
[11] A. Zorin, S. Lotkhov, H. Zangerle, and J. Niemeyer, “Coulomb Blockade and Cotunneling in Single Electron Circuits with OnChip Resistors: Towards the Implementation of the R Pump,” J. Applied Physics, vol. 88, no. 5, pp. 26652670, Sept. 2000.
[12] S. Lotkhov, S. Bogoslovsky, A. Zorin, and J. Niemeyer, “Operation of a ThreeJunction SingleElectron Pump with OnChip Resistors,” Applied Physics Letters, vol. 78, no. 7, pp. 946948, Feb. 2001.
[13] K. Likharev, “Correlated Discrete Transfer of Single Electrons in Ultrasmall Tunnel Junctions,” IBM J. Research and Development, vol. 32, no. 1, pp. 144158, Jan. 1988.
[14] J. Tucker, “Complementary Digital Logic Based on the 'Coulomb Blockade',” J. Applied Physics, vol. 72, no. 9, pp. 43994413, Nov. 1992.
[15] R. Chen, A. Korotkov, and K. Likharev, “SingleElectron Transistor Logic,” Applied Physics Letters, vol. 68, no. 14, pp. 19541956, Apr. 1996.
[16] N. Yoshikawa, Y. Jinguu, H. Ishibashi, and M. Sugahara, “Complementary Digital Logic Using Resistively Coupled Single Electron Transistor,” Japanese J. Applied Physics, vol. 35, no. 2B, pp. 11401145, Feb. 1996.
[17] M. Jeong, Y. Jeong, S. Hwang, and D. Kim, “Performance of SingleElectron Transistor Logic Composed of MultiGate SingleElectron Transistors,” Japanese J. Applied Physics, vol. 36, no. 11, pp. 67066710, Nov. 1997.
[18] K. Likharev and V. Semenov, “Possible Logic Circuits Based on the Correlated SingleElectron Tunneling in Ultrasmall Junctions,” Extended Abstracts, Int'l Superconductive Conf., p. 182, 1987.
[19] Y.N. Nazarov and S.V. Vyshenskii, “SET Circuits for Digital Applications,” SingleElectron Tunneling and Mesoscopic Devices, H. Koch and H. Lubbig, eds., vol. 31, pp. 6166, SpringerVerlag, 1992.
[20] C. Lageweg, S. Cotofana, and S. Vassiliadis, “Static Buffered SET Based Logic Gates,” Proc. Second IEEE Conf. Nanotechnology (NANO), pp. 491494, Aug. 2002.
[21] C. Lageweg, S. Cotofana, and S. Vassiliadis, “Single Electron Encoded Latches and FlipFlops,” IEEE Trans. Nanotechnology, vol. 3, no. 2, pp. 237248, June 2004.
[22] S. Cotofana, C. Lageweg, and S. Vassiliadis, “On Computing Addition Related Arithmetic Operations via Controlled Transport of Charge,” Proc. 16th IEEE Symp. Computer Arithmetic, pp. 245252, June 2003.
[23] C. Lageweg, S. Cotofana, and S. Vassiliadis, “Digital to Analog Conversion Performed in Single Electron Technology,” Proc. First IEEE Conf. Nanotechnology (NANO), Oct. 2001.
[24] S. Vassiliadis, S. Cotofana, and K. Bertels, “21 Addition and Related Arithmetic Operations with Threshold Logic,” IEEE Trans. Computers, vol. 45, no. 9, pp. 10621068, Sept. 1996.
[25] B. Parhami, Computer Arithmetic— Algorithms and Hardware Design, first ed. Oxford Univ. Press, 2000.