
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Marcelo E. Kaihara, Naofumi Takagi, "A Hardware Algorithm for Modular Multiplication/Division," IEEE Transactions on Computers, vol. 54, no. 1, pp. 1221, January, 2005.  
BibTex  x  
@article{ 10.1109/TC.2005.1, author = {Marcelo E. Kaihara and Naofumi Takagi}, title = {A Hardware Algorithm for Modular Multiplication/Division}, journal ={IEEE Transactions on Computers}, volume = {54}, number = {1}, issn = {00189340}, year = {2005}, pages = {1221}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2005.1}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  A Hardware Algorithm for Modular Multiplication/Division IS  1 SN  00189340 SP12 EP21 EPD  1221 A1  Marcelo E. Kaihara, A1  Naofumi Takagi, PY  2005 KW  Computer arithmetic KW  hardware algorithm KW  modular multiplication KW  modular division KW  redundant representation KW  cryptography. VL  54 JA  IEEE Transactions on Computers ER   
[1] ANSI X9.30, Public Key Cryptography for the Financial Services Industry: Part 1: The Digital Signature Algorithm (DSA). Am. Nat'l Standard Inst. Am. Bankers Assoc., 1997.
[2] J.C. Bajard, L.S. Didier, and P. Kornerup, “An RNS Montgomery Modular Multiplication Algorithm,” IEEE Trans. Computers, vol. 47, no. 7, pp. 766776, July 1998.
[3] R.P. Brent and H.T. Kung, “Systolic VLSI Array for LinearTime GCD Computation,” Proc. VLSI '83, F. Anceau and E.J. Aas, eds., pp. 145154, 1983.
[4] J.S. Coron, “Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems,” Proc. Workshop Cryptographic Hardware and Embedded Systems, pp. 292302, 1998.
[5] W. Diffie and M.E. Hellman, “New Directions in Cryptography,” IEEE Trans. Information Theory, vol. 22, no. 11, pp. 644654, Nov. 1976.
[6] T. ElGamal, “A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms,” IEEE Trans. Information Theory, vol. 31, no. 4, pp. 469472, July 1985.
[7] W.L. Freking and K.K. Parhi, “Modular Multiplication in the Residue Number System with Application to MassivelyParallel PublicKey Cryptography Systems,” Proc. 34th Asilomar Conf. Signals, Systems, and Computers, pp. 13391343, Oct. 2000.
[8] M.E. Kaihara and N. Takagi, “A VLSI Algorithm for Modular Multiplication/Division,” Proc. 16th IEEE Symp. Computer Arithmetic, pp. 220227, June 2003.
[9] S. Kawamura, M. Koike, F. Sano, and A. Shimbo, “CoxRower Architecture for Fast Parallel Montgomery Multiplication,” Proc. Advances in CryptologyEUROCRYPT 2000, pp. 523538, May 2000.
[10] D.E. Knuth, The Art of Computing Programming, Volume 2, Seminumerical Algorithms, third ed. Reading Mass.: AddisonWesley, 1998.
[11] N. Koblitz, “Elliptic Curve Cryptosystems,” Math. Computation, vol. 48, no. 177, pp. 203209, Jan. 1987.
[12] P.C. Kocher, “Timing Attacks on Implementations of DiffieHellman, RSA, DSS, and Other Systems,” Proc. Advances in CryptologyCRYPTO '96, pp. 104113, Aug. 1996.
[13] P.C. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” Proc. Advances in Cryptology (CRYPTO '99), pp. 388398, 1999.
[14] Ç.K Koç, T. Acar, and B.S. Kaliski Jr., “Analyzing and Comparing Montgomery Multiplication Algorithms,” IEEE Micro, vol. 16, no. 3, pp. 2633, June 1996.
[15] P. Kornerup, “HighRadix Modular Multiplication for Cryptosystems,” Proc. 11th IEEE Symp. Computer Arithmetic, G. Jullien, M.J. Irwin, and E. Swartzlander, eds., pp. 277283, 1993.
[16] P.L. Montgomery, “Modular Multiplication without Trial Division,” Math. Computation, vol. 44, no. 170, pp. 519521, Apr. 1985.
[17] H. Orup, “Simplifying Quotient Determination in HighRadix Modular Multiplication,” Proc. 12th IEEE Symp. Computer Arithmetic, S. Knowles and W.H. McAllister, eds., pp. 193199, 1995.
[18] E. Oswald and M. Aigner, “Randomized AdditionSubtraction Chains as a Countermeasure against Power Attacks,” Proc. Cryptographic Hardware and Embedded SystemsCHES 2001, Ç.K. Koç, D. Naccache and C. Paar, eds., pp. 3950, May 2001.
[19] S.N. Parikh and D.W. Matula, “A Redundant Binary Euclidean GCD Algorithm,” Proc. 10th Symp. Computer Arithmetic, pp. 220224, June 1991.
[20] K.C. Posch and R. Posch, “Modulo Reduction in Residue Number Systems,” IEEE Trans. Parallel and Distributed Systems, vol. 6, no. 5, pp. 449454, May 1995.
[21] R.L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital Signatures and PublicKey Cryptosystems,” Comm. ACM, vol. 21, no. 2, pp. 120126, Feb. 1978.
[22] N. Takagi, “A VLSI Algorithm for Modular Division Based on the Binary GCD Algorithm,” IEICE Trans. Fundamentals, vol. E81A, no. 5, pp. 724728, May 1998.
[23] N. Takagi and S. Yajima, “Modular Multiplication Hardware Algorithms with a Redundant Representation and Their Application to RSA Cryptosystem,” IEEE Trans. Computers, vol. 41, no. 7, pp. 887891, July 1992.
[24] A.F. Tenca, G. Todorov, and Ç.K. Koç, “HighRadix Design of a Scalable Modular Multiplier,” Proc. Cryptographic Hardware and Embedded SystemsCHES 2001, Ç.K. Koç, D. Naccache, C. Paar, eds., pp. 185201, 2001.
[25] C.D. Walter, “Systolic Modular Multiplication,” IEEE Trans. Computers, vol. 42, no. 3, pp. 376378, Mar. 1993.