The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.12 - December (2004 vol.53)
pp: 1535-1546
ABSTRACT
A Multiple Bus Network (MBN) connects a set of processors via a set of buses. Two important parameters of an MBN are its loading (largest number of connections on a bus) and its degree (largest number of connections to a processor). These parameters determine the cost, speed, and implementability of the MBN. The smallest degree that any useful MBN can have is 2. In this paper, we study the relationship between running time, degree, and loading of degree-2 MBNs running a fundamental class of algorithms called binary tree algorithms. (A binary tree algorithm reduces 2^n inputs at the leaves of a balanced binary tree to a single result at the root of the tree.) Specifically, we establish a nontrivial \Omega({\frac{n}{\log n}}) loading lower bound for any degree-2 MBN running a 2^n input binary tree algorithm optimally in n steps. We show that this bound does not hold if the restriction on the degree or the running time is relaxed. That is, optimal-time, degree-3, constant loading MBNs and suboptimal-time, degree-2, constant loading MBNs exist for binary tree algorithms. We also derive a lower bound on the additional time (beyond the optimal) needed to run binary tree algorithms on a degree--2, loading-L MBN, for any L\ge 3.
INDEX TERMS
Multiple bus networks, binary tree algorithms, bus loading, lower bounds, interconnection networks.
CITATION
Hettihe P. Dharmasena, Ramachandran Vaidyanathan, "Lower Bounds on the Loading of Multiple Bus Networks for Binary Tree Algorithms", IEEE Transactions on Computers, vol.53, no. 12, pp. 1535-1546, December 2004, doi:10.1109/TC.2004.117
20 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool